New NSF Solicitation to Revolutionize Whole Departments

The below note was posted by Jeff Forbes to the SIGCSE Members list.  What an interesting idea — funding to change a whole department!

NSF has posted a new solicitation for proposals, IUSE/Professional Formation of Engineers: Revolutionizing Engineering Departments (RED).

RED focuses on efforts to effect significant, systemic departmental change that impacts undergraduate student success in their formation as computer scientists or engineers. This program is particularly interested in efforts that address the middle two years of the four year undergraduate experience, during which students receive the bulk of their formal technical preparation. RED proposals need to engage the entire department, and the effort must be led by the chair/head of the department.

See http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505105 for more information.

Note: “Engineering departments” in the solicitation refers to both engineering and computer science departments, regardless of whether those departments are in a school of Engineering.

Letters of Intent are due October 28, 2014.

August 19, 2014 at 8:18 am Leave a comment

2014: The Year the Media Stopped Caring About MOOCs?

Perhaps we succeeded in preventing the MOOCopalypse, despite the claims that “Computer Science MOOCS march forward!”  Since the MOOC phenomenon was mostly fed by the media, the decline of interest from the media may be a good sign.

The news media’s appetite for MOOC stories has been insatiable. So when the University of Pennsylvania sent an email inviting several hundred education reporters to a seminar on massive open online courses, it anticipated a healthy turnout.

But as the catering deadline approached at the National Press Club, in Washington, organizers realized that they had barely enough registered attendees to justify a platter of finger food.

“We didn’t have a set thing in mind as to how many would attend, but what we were thinking was 15 to 20 from, let’s call them, ‘established’ media outlets,” said Ron Ozio, director of media relations at Penn. “And we got four.”

The university canceled the event.

via 2014: The Year the Media Stopped Caring About MOOCs? – Wired Campus – Blogs – The Chronicle of Higher Education.

August 18, 2014 at 8:37 am Leave a comment

Moving From “CS for a Few” to “CS for All” to “CS For Each”

Really interesting point from Joanna Goode.  “CS for All” should not mean “One Kind of CS that All have to take.”  Her notion of “CS for Each” goes further than the multiple CS1’s that we have at Georgia Tech.  Seymour Papert talked about the value of a personal relationship with a discipline, and I think that’s the direction that Joanna is steering us.

But, as all the students gain access to computer science learning, teachers are charged with the task of teaching each student based on the lived experiences, prior knowledge, and the wonders of the world that the child brings to the classroom. Developing a computer science classroom that welcomes each child requires a culturally responsive pedagogy that views diversity as a strength that should be integrated within the curriculum. Additional instructional supports for English language learners and students with disabilities should be developed and shared to support teachers in a CS for Each model.

via Computer Science Teachers Association: Moving From “CS for a Few” to “CS for All” to “CS For Each”.

August 14, 2014 at 5:57 am 5 comments

ScratchJr is now available for iPad (Android and Web coming)

Pretty exciting new direction for Scratch!  I’m really curious about the research that’s going to come out using ScratchJr. What can students learn to do with ScratchJr, and what’s the distribution (e.g., all kids learn X, but only 10% reach Y)? What do students transfer forward from learning ScratchJr?

ScratchJr is an introductory programming language that enables young children ages 5-7 to create their own interactive stories and games. Children snap together graphical programming blocks to make characters move, jump, dance, and sing. Children can modify characters in the paint editor, add their own voices and sounds, even insert photos of themselves — then use the programming blocks to make their characters come to life.ScratchJr was inspired by the popular Scratch programming language http://scratch.mit.edu, used by millions of young people ages 8 and up around the world. In creating ScratchJr, we redesigned the interface and programming language to make them developmentally appropriate for younger children, carefully designing features to match young children’s cognitive, personal, social, and emotional development.ScratchJr is now available as a free iPad app. We expect to release an Android version later in 2014 and a web-based version in 2015.

via ScratchJr – About.

August 13, 2014 at 8:58 am 4 comments

More tech companies release diversity figures: They look a lot like Google’s and Yahoo’s

Below is the article on Facebook’s diversity figure release. (Google really did lead the pack here.)  Here’s Twitter’s, LinkedIn’s, and EBay’s.  For those of us doing this work, these are not surprising results.  But they are super important for showing us where we are now.  We have very little diversity in the computing industry.  This gives us a sense of what we need to work on, and how to measure progress.

Sadly, Facebook’s numbers look a lot like the other four. I’ll let the figures speak for themselves:Globally the company is 69 percent male, 31 percent female. In terms of ethnicity the company is 57 percent white, 34 percent Asian, 4 percent Hispanic, 3 percent two or more races, 3 percent black and 0 percent other.Scrutinized further, in the tech force of Facebook, 85 percent are male and 15 percent are female. In terms of ethnicity in the tech division 53 percent are white, 41 percent are Asian, 3 percent are Hispanic, 2 percent are two or more races, 1 percent is black and 0 percent is other.

via Facebook releases diversity figures: They look a lot like Google’s and Yahoo’s – Salon.com.

August 12, 2014 at 8:51 am 3 comments

Get CS into Schools through Math and Science Classes: What we might lose

The August issue of Communications of the ACM (see here) includes a paper in the Viewpoints Education column by Uri Wilensky, Corey E. Brady, and Michael S. Horn on “Fostering Computational Literacy in Science Classrooms.” I was eager to get Uri’s perspective on CS education in high schools into the Viewpoints column after hearing him speak at the January CS Education Research workshop.

Uri suggests that the best way to get computational literacy into high schools is by adding computer science to science classes. He’s done the hard work of connecting his agent-based modeling curriculum to Next Generation Science Standards. In Uri’s model, Computer Science isn’t a “something else” to add to high school. It helps science teachers meet their needs.

Uri isn’t the only one pursuing this model. Shriram and Matthias suggested teaching computer science through mathematics classes in CACM in 2009. Bootstrap introduces computer science at the middle school level as a way to learn Algebra more effectively. Irene Lee’s GUTS (“Growing Up Thinking Scientifically”) introduces computation as a tool in middle school science.

In most states today, computer science is classified as a business/vocational subject, called “Career and Technical Education (CTE).” There are distinct advantages to a model that puts CS inside science and mathematics classes. Professional development becomes much easier. Science and mathematics teachers have more of the background knowledge to pick up CS than do most business teachers. CS becomes the addition of some modules to existing classes, not creating whole new classes.

It’s an idea well worth thinking about.  I can think of three reasons not to pursue CS through math/science model, and the third one may be a show-stopper.

(1) Can science and math teachers help us broaden participation in computing? Remember that the goal of the NSF CS10K effort is to broaden access to computing so as to broaden participation in computing. As Jane Margolis has noted, CTE teachers know how to teach diverse groups of students. Science and mathematics classes have their own problems with too little diversity. Does moving CS into science and mathematics classes make it more or less likely that we’ll attract a more diverse audience to computing?

(2) Do we lose our spot at the table? I’ve noted in a Blog@CACM post that there are computer scientists annoyed that CS is being classified by states as “science” or “mathematics.” Peter Denning has argued that computer science is a science, but cuts across many fields including mathematics and engineering. If we get subsumed into mathematics and computer science classes, do we lose our chance to be a peer science or a peer subject to mathematics? And is that going against the trend in universities? Increasingly, universities are deciding that computer science is its own discipline, either creating Colleges/Schools of CS (e.g., Georgia Tech and CMU) or creating Colleges/Schools of Information/Informatics (e.g., U. Washington, U. Michigan, Drexler, and Penn State).

(3) Do we lose significant funding for CS in schools? Here’s the big one. Currently, computer science is classified as “Career and Technical Education.” As CTE, CS classes are eligible for Perkins funding — which is not available for academic classes, like mathematics or science.

I tried to find out just how much individual schools get from Perkins. Nationwide, over $1.2 billion USD gets distributed. I found a guide for schools on accessing Perkins funds. States get upwards of $250K for administration of the funds. I know that some State Departments of Education use Perkins funding to pay for Department of Education personnel who manage CTE programs. To get any funding, high schools must be eligible for at least $15K. That’s a lot of money for a high school.

The various CS Education Acts (e.g., on the 2011 incarnation and on the 2013 incarnation) are about getting CS classified as STEM in order to access funding set aside for STEM education. As I understand it, none of these acts has passed. Right now, schools can get a considerable amount of funding if CS stays in CTE. If schools move CS to math and science, there is no additional funding available.

Perkins funding is one of the reasons why CS has remained in CTE in South Carolina. It would be nice to have CS in academic programs where it might be promoted among students aiming for college. But to move CS is to lose thousands of dollars in funding. South Carolina has so far decided that it’s not in their best interests.

Unless a CS education act ever passes Congress, it may not make economic sense to move CS into science or mathematics courses. The federal government provides support for STEM classes and CTE classes.  CS is currently in CTE.  We shouldn’t pull it out until it counts as STEM.  This is another good reason to support a CS education act.

August 11, 2014 at 8:28 am 6 comments

Study finds increased STEM enrollment: Taking from education and business

First the good news: STEM enrollment is up.  Then the surprising news: Humanities are not losing students to STEM.  Rather, it’s the professional fields like education that are losing enrollment.  That makes CS Ed (and other STEM discipline-based education research (DBER) fields) the odd winner-losers.  Yay, there are more students, but there will be fewer STEM teachers in the future to teach them.

Policy makers regularly talk about the need to encourage more undergraduates to pursue science and technology fields. New data suggest that undergraduates at four-year institutions in fact have become much more likely to study those fields, especially engineering and biology.

And while much of the public discussion of STEM enrollments has suggested a STEM vs. liberal arts dichotomy (even though some STEM fields are in fact liberal arts disciplines), the new study suggests that this is not the dynamic truly at play. Rather, STEM enrollments are growing while professional field enrollments (especially business and education) are shrinking.

via Study finds increased STEM enrollment since the recession | Inside Higher Ed.

The ComputerWorldK agrees. They claim that the smart students were going into business, then Wall Street collapsed, and now they’re going into CS and that’s why we’re having sky-rocketing enrollments.

The number of computer science graduates will continue to increase. Computer science enrollments rose by nearly 30% in the 2011-12 academic year, and they increased 23% the year before that.

The trend of enrollment increases since 2010 bodes well for a “future increase in undergraduate computing production,” according to the report.

The recession that hit in 2008 sent IT unemployment soaring, but it may have done more damage to the finance sector, especially in terms of reputation. That prompted some educators at the time to predict that the recession might send math-inclined students from the world of hedge funds to computer science.

via Wall Street’s collapse was computer science’s gain – Computerworld.

August 10, 2014 at 9:34 am 3 comments

Older Posts Newer Posts


Recent Posts

August 2014
M T W T F S S
« Jul    
 123
45678910
11121314151617
18192021222324
25262728293031

Feeds

Blog Stats

  • 938,847 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 3,002 other followers

CS Teaching Tips


Follow

Get every new post delivered to your Inbox.

Join 3,002 other followers