Posts tagged ‘jobs’

Let’s do the math: Does it make sense to fill a pipeline of CS workers from 3rd grade?

According to the article linked below, there is a large effort to fill STEM worker jobs in Northern Virginia by getting kids interested in STEM (including computing) from 3rd grade on.  The evidence for this need is that there will be 50K new jobs in the region between 2013 and 2018.

The third graders are 8 years old.  If they can be effective STEM workers right out of high school, there’s another 10 years to wait before they can enter the workforce — 2024.  If they need undergrad, 2028.  If they need advanced degrees, early 2030’s.  Is it even possible to predict workforce needs out over a decade?

Now, let’s consider the cost of keeping that pipeline going, just in terms of CS.  Even in Northern Virginia, only about 12% of high schools offer CS today.  So, we need a fourfold increase in CS teachers — but that’s just high school.  The article says that we want these kids supported in CS from 3rd grade on.  Most middle schools have no CS teachers.  Few elementary schools do.  We’re going to have to hire and train a LOT of teachers to fulfill that promise.

Making a jobs argument for teaching 3rd graders CS doesn’t make sense.

The demand is only projected to grow greater. The Washington area is poised to add 50,000 net new STEM jobs between 2013 and 2018, according to projections by Stephen S. Fuller, the director of the Center for Regional Analysis at George Mason University. And Fuller said that STEM jobs are crucial in that they typically pay about twice as much as the average job in the Washington area and they generate significantly more economic value.

It is against this backdrop that SySTEMic Solutions is working to build a pipeline of STEM workers for the state of Virginia, starting with elementary school children and working to keep them consistently interested in the subject matter until they finish school and enter the workforce.

via To create a pipeline of STEM workers in Virginia, program starts with littlest learners – The Washington Post.

June 19, 2014 at 8:29 am 12 comments

Reading, Writing, Arithmetic, and Lately, Coding: But mostly a video game (Elliot Soloway)

Elliot gets it right in his NYtimes quote from this last weekend.  Young kids who code are probably not learning much computer science that might lead to future jobs.  Rather, they’re “programming” as if it’s a video game.  That’s not at all bad, but it makes less believable the argument that we need coding in skills to improve the future labor force.

The spread of coding instruction, while still nascent, is “unprecedented — there’s never been a move this fast in education,” said Elliot Soloway, a professor of education and computer science at the University of Michigan. He sees it as very positive, potentially inspiring students to develop a new passion, perhaps the way that teaching frog dissection may inspire future surgeons and biologists.

But the momentum for early coding comes with caveats, too. It is not clear that teaching basic computer science in grade school will beget future jobs or foster broader creativity and logical thinking, as some champions of the movement are projecting. And particularly for younger children, Dr. Soloway said, the activity is more like a video game — better than simulated gunplay, but not likely to impart actual programming skills.

via Reading, Writing, Arithmetic, and Lately, Coding – NYTimes.com.

May 15, 2014 at 8:38 am 10 comments

New ACM Report on the Need for CS in K-12

ACM has just released a report arguing for the need for computer science in K-12 schools.  They are very strongly making the jobs argument.  The appendix to the report details state-by-state what jobs are available in computing, the salaries being paid for those jobs, and how many computing graduates (including how many AP CS exams vs other AP exams were taken in 2013) in that state.

The report Rebooting the Pathway to Success: Preparing Students for Computing Workforce Needs in the United States calls on education and business leaders and public policy officials in every state to take immediate action aimed at filling the pipeline of qualified students pursuing computing and related degrees, and to prepare them for the 21st century workforce. The report provides recommendations to help these leaders join together to create a comprehensive plan that addresses K-12 computer science education and that aligns state policy, programs, and resources to implement these efforts.

via ACM Report – Rebooting the Pathway to Success.

March 5, 2014 at 11:55 am 2 comments

Shortage in the IT U.S. labor market? Or just a lack of graduates?

Is the shortage of STEM graduates a myth, as IEEE has been arguing recently?  Is the case for IT different than the case for STEM overall?

I found the analysis linked below interesting.  Most IT workers do not have an IT-related degree.  People with CS degrees are getting snapped up.  The suggestion is that there’s not a shortage of IT workers, because IT workers are drawn from many disciplines.  There may be a shortage of IT workers who have IT training.

IT workers, who make up 59 percent of the entire STEM workforce, are predominantly drawn from fields outside of computer science and mathematics, if they have a college degree at all. Among the IT workforce, 36 percent do not have a four-year college degree; of those who do, only 38 percent have a computer science or math degree, and more than a third (36 percent) do not have a science or technology degree of any kind. Overall, less than a quarter (24 percent) of the IT workforce has at least a bachelor’s degree in computer science or math. Of the total IT workforce, two-thirds to three-quarters do not have a technology degree of any type (only 11 percent have an associate degree in any field).4

Although computer science graduates are only one segment of the overall IT workforce, at 24 percent, they are the largest segment by degree (as shown in Figure F, they are 46 percent of college graduates entering the IT workforce, while nearly a third of graduates entering IT do not have a STEM degree). The trend in computer scientist supply is important as a source of trained graduates for IT employers, particularly for the higher-skilled positions and industries, but it is clear that the IT workforce actually draws from a pool of graduates with a broad range of degrees.

via Guestworkers in the high-skill U.S. labor market: An analysis of supply, employment, and wage trends | Economic Policy Institute.

February 13, 2014 at 1:16 am 6 comments

Hiring Lecturers (face-to-face and online) at Georgia Tech

The College of Computing at the Georgia Institute of Technology in Atlanta, Georgia invites applications for full-time, non-tenure-track faculty positions at the rank of Instructor or Lecturer (based on experience) to start in May 2014.  Primary responsibilities are to provide high quality classroom teaching and service to the department.  In addition, the College is specifically looking for candidates interested in performing as Instructor of Record for large online master’s degree courses with prerecorded video lecture content.  Applicants must have a minimum of a Master’s Degree in Computer Science or a related field. This position is renewable annually based on funding and the needs of the College.  This is a 9 month contract although summer teaching is typically available.

Applications should include a cover letter, curriculum vitae, teaching statement, material relevant to evaluating the applicant’s teaching abilities, and the names of at least three references.    These documents should be emailed to recruiting@cc.gatech.edu with “Lecturer Vacancy” in the subject line.  Also, candidates are requested to ask references to send their letters directly to the search committee via electronic mail to recruiting@cc.gatech.edu and ask them to put your name in the subject line.  For full consideration, interested individuals are asked to apply by April 15, 2014.  However, posting will remain open until position(s) are filled.

Duties, Responsibilities and Assignments

The overall responsibility of the lecturers and instructors at the College of Computing is to teach such Computer Science classes as are assigned to them, usually the large first and second year classes.  The specific duties involved in teaching such a class are:

1.     Preparing and maintaining a class syllabus and schedule.

2.     Preparing and delivering materials for each of the scheduled meeting times of the class. For Online courses monitor course progress and activity and respond appropriately to any problems.

3.     Holding regularly scheduled office hours to assist students who are having any difficulty with course materials.

4.     If Teaching Assistants (TAs) are required for the class,

  • a.      Making the selection of TAs to hire for the class
  • b.     Ensuring that each TA is trained with respect to their legal obligations to the students and to the technical content of the class.
  • c.      Ensuring appropriate conduct of the TAs.

5.     Supervising the development of, and approving the content of, all assignments given to the students in the class.

6.     Supervising the development of, and approving the content of, all evaluation materials given to the students in the class.

7.     Supervising and ensuring the correctness and fairness of all grading activities in the class.

8.     Computing and delivering to the Registrar’s Office mid-term and final grades for the class.

9.     Assisting in reviews of their fellow lecturers on a regular basis.

10.  Participating in committees and other administrative activities as required by the administration.

January 24, 2014 at 9:23 am 2 comments

Computer Manpower in Higher Education — Is There a Crisis? Worse than you might think

A slightly different pattern for me: Check out the quote first, and I’ll add comments after.

Let us consider the conundrum facing the computer field in higher education first. It is experiencing an exponentially increasing demand for its product with an inelastic labor supply. How has it reacted? NSF has made a survey of the responses of engineering departments, including computer science departments in schools of engineering, to the increasing demand for undergraduate education in engineering. There is a consistent pattern in their responses and the results can be applied without exception to the computer field whether the departments are located in engineering schools or elsewhere. 80% of the universities are responding by increasing teaching loads, 50% by decreasing course offerings and concentrating their available faculty on larger but fewer courses, and 66% are using more graduate-student teaching assistants or part-time faculty. 35% report reduced research opportunities for faculty as a result. In brief, they are using a combination of rational management measures to adjust as well as they can to the severe manpower constraints under which they must operate. However, these measures make the universities’ environments less attractive for employment and are exactly counterproductive to their need to maintain and expand their labor supply. They are also counterproductive to producing more new faculty since the image graduate students get of academic careers is one of harassment, frustration, and too few rewards. The universities are truly being choked by demand for their own product and have a formidable people-flow problem, analogous to but much more difficult to address than the cash-flow problem which often afflicts rapidly growing businesses. There are no manpower banks which can provide credit.

via Computer Manpower — Is There a Crisis?.

This quote was presented by Eric Roberts in his keynote earlier this month at the NSF-sponsored Future Computing Education Research Summit (well organized by Steve Cooper).  The highlight is my addition, because I was struck by the specificity of the description.  I find the description  believable, and it captures the problems of CS higher-education today, especially in the face of rising enrollments in CS classes (discussed by Eric Roberts here and by Ed Lazowka and Dave Patterson here).

What makes this analysis scarier is that the paper quoted was published in 1982.  Back in the 1980’s, the state Universities had the mandate and the budget to grow to meet the demand.  They didn’t always have the CS PhD graduates that they needed, so some Math and EE PhDs became CS faculty.  Today, though, the state Universities are under severe budget constraints.  How will we meet the demand in enrollment?  In the 1980’s, some CS programs met the demand by raising the bar for entering the CS major, which ended up make CS more white and male (because only the more privileged students were able to stay above the bar).  Will our solutions lead to less diversity in CS?  Will we lose more faculty to industry, and replace them with MOOCs?

January 24, 2014 at 1:44 am 2 comments

The Economic Value of (Computing) Education: For The Entrepreneur and Inventor, too #CSEdWeek

The linked article below provides results I’ve seen before — that the average income of college-educated is much higher than the non-college-educated.  I had not yet seen the below claim: Most inventors and entrepreneurs, the individuals who impact economic growth, are also predominantly college educated.  The model of the college-dropout entrepreneur is the exception, not the rule.  This is important for computing, too, where our model of the dropout CEO of the startup is legendary — but really rare.  If you want to create a computing company, you’re best off getting computing education.

Those who most directly impact economic growth—inventors and entrepreneurs—also tend to be highly educated. A Georgia Tech survey of patent inventors found that 92 percent had a bachelor’s degree, almost exclusively in STEM (Science, Technology, Engineering, and Mathematics) subjects. Likewise, almost all of the founders (92 percent) of the high-tech companies that have powered GDP in recent decades are college educated, especially in STEM fields. Thus, it is no surprise that macroeconomic research finds very large gains from education on economic growth at both the international and regional levels, as the research of Harvard’s Ed Glaeser and many others has shown.

via The Economic Value of Education | Brookings Institution.

December 11, 2013 at 1:57 am 6 comments

Older Posts


Recent Posts

September 2014
M T W T F S S
« Aug    
1234567
891011121314
15161718192021
22232425262728
2930  

Feeds

Blog Stats

  • 940,299 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 3,011 other followers

CS Teaching Tips


Follow

Get every new post delivered to your Inbox.

Join 3,011 other followers