Posts tagged ‘NSF’

New NSF Solicitation to Revolutionize Whole Departments

The below note was posted by Jeff Forbes to the SIGCSE Members list.  What an interesting idea — funding to change a whole department!

NSF has posted a new solicitation for proposals, IUSE/Professional Formation of Engineers: Revolutionizing Engineering Departments (RED).

RED focuses on efforts to effect significant, systemic departmental change that impacts undergraduate student success in their formation as computer scientists or engineers. This program is particularly interested in efforts that address the middle two years of the four year undergraduate experience, during which students receive the bulk of their formal technical preparation. RED proposals need to engage the entire department, and the effort must be led by the chair/head of the department.

See http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505105 for more information.

Note: “Engineering departments” in the solicitation refers to both engineering and computer science departments, regardless of whether those departments are in a school of Engineering.

Letters of Intent are due October 28, 2014.

August 19, 2014 at 8:18 am Leave a comment

New NSF Improving Undergraduate STEM Education (IUSE) Solicitation

Last year’s IUSE solicitation was wonderfully vague and welcomed all new ideas.  The program now has a full solicitation, which is a bit more limiting, but is still an importance source for computing education funding.

The Improving Undergraduate STEM Education IUSE program invites proposals that address immediate challenges and opportunities that are facing undergraduate STEM education, as well as those that anticipate new structures e.g. organizational changes, new methods for certification or credentialing, course re-conception, cyberlearning, etc. and new functions of the undergraduate learning and teaching enterprise. The IUSE program recognizes and respects the variety of discipline-specific challenges and opportunities facing STEM faculty as they strive to incorporate results from educational research into classroom practice and work with education research colleagues and social science learning scholars to advance our understanding of effective teaching and learning.Toward these ends the program features two tracks: 1 Engaged Student Learning and 2 Institutional and Community Transformation. Two tiers of projects exist within each track: i Exploration and ii Design and Development. These tracks will entertain research studies in all areas. In addition, IUSE also offers support for a variety of focused innovative projects that seek to identify future opportunities and challenges facing the undergraduate STEM education enterprise.

via Improving Undergraduate STEM Education IUSE: EHR nsf14588.

August 9, 2014 at 8:34 am Leave a comment

Hands up who likes PHP? The role of popular programming languages in Computing Education

I was at the NSF CS10K Evaluators meeting earlier this summer, and we got to talk about important research questions. Someone suggested the issue of learning progressions. How do students move from Scratch or Alice or Blockly to Java or C++? One of the evaluators, whose background is entirely in education and evaluation, asked, “Professional programmers don’t use Scratch and Alice?” We explained what professional programmers really do. “Then why are we teaching Scratch and Alice, especially if we don’t know how the transfer works?!?”

The tension between what languages are “useful” (read: “we use them today in industry”) and what languages are helpful for learning has always existed in CS Ed. I’ve recommended the blog below to several people this summer, including reading  the comments from the developers who push back — “Yeah, stop with Alice and teach real languages!”  I agree with the post’s author, but I see that, even in the CS10K project, the notion that we should teach what’s vocationally useful is strong.

At the NSF CS10K Evaluators meeting, I got to wondering about a different question. Most of our evaluators come from science and math education projects, where you teach the way the world is.  If you have trouble teaching students that F=ma, you better just find a new way to teach it. I told the evaluators that I hope their results inform the design of future programming languages. Computer science is a science of the artificial, I explained. If you find that mutable variables are hard to understand, we can provide programming languages without them. If the syntax of curly braces on blocks is too subtle for novices to parse (as I predict from past research findings), we can fix that, too. I got confused looks. The idea that the content and the medium could be changed is not something familiar to this audience. We have to figure out how to close that loop from the evaluators to the designers, because it’s too important an opportunity to base our language design for novices on empirical results.

It is a school’s job to churn out students who will be able to walk into a job in industry on day one and work in whatever language/paradigm is flavour du jour.
WRONG! We’re here to teach children the core concepts of Computer Science. Working on that basis to produce someone with employable skills is your job. Do you expect Chemistry students to walk out of school ready to begin work in a lab? Should we stop using Scratch as a teaching language because nobody programs with it in industry? Of course not, so please stop recommending that we should be teaching using Scala/JSON/whatever is currently flavour of the month.

via Hands up who likes PHP? | Code? Boom..

June 8, 2014 at 7:30 am 20 comments

NSF funding for junior faculty in first two years

Computing education (CE21) researchers are explicitly encouraged in this solicitation.  It’s a nice idea to try to deal with the low success rates of NSF proposals these days.

With the goal of encouraging research independence immediately upon obtaining one’s first academic position after receipt of the PhD, the Directorate for Computer and Information Science and Engineering (CISE) will award grants to initiate the course of one’s independent research. Understanding the critical role of establishing that independence early in one’s career, it is expected that funds will be used to support untenured faculty or research scientists (or equivalent) in their first two years in an academic position after the PhD. One may not yet have received any other grants in the Principal Investigator (PI) role from any institution or agency, including from the CAREER program or any other award post-PhD. Serving as co-PI, Senior Personnel, Post-doctoral Fellow, or other Fellow does not count against this eligibility rule. It is expected that these funds will allow the new CISE Research Initiation Initiative PI to support one or more graduate students for up to two years.

via Computer and Information Science and Engineering (CISE) Research Initiation Initiative (CRII) (nsf14562).

May 17, 2014 at 9:04 am 6 comments

The personal cost of applying for research grants

For academics, this study falls in the category of “Duh! Who didn’t know that?!?”  But it might not be obvious to non-academics.  NSF hit-rates are below 10% in most fields.  Proposals take tons of time to put together (way more than a conference paper, on par with a journal paper), and you have to keep producing them until you get hits in a research-intensive university.  When hit rates were around 30%, you’d do four proposals and could expect one to hit.  Nowadays, you’re doing over 10, and then you’re still not sure you’ll get funded.  It’s a huge cost.

The pressure to win high-status funding means that researchers go to extraordinary lengths to prepare their proposals, often sacrificing family time and personal relationships. During our research into the stressful process of applying for research grants, one researcher, typical of many, said, “My family hates my profession. Not just my partner and children, but my parents and siblings. The insecurity despite the crushing hours is a soul-destroying combination that is not sustainable.”

via The personal cost of applying for research grants | Higher Education Network | Guardian Professional.

May 11, 2014 at 9:32 am 17 comments

NSF CAREER awards include a CS Ed Research track

For the first time ever, CS Education research is a field eligible for NSF CAREER. Applicants will be able to select STEM-CP: CE21 as the program for the July deadline. Please help getting the word out to potential applicants. We’d like to see some good proposals in this first year inviting CE21 CAREER proposals.

Colleagues,

The National Science Foundation’s Computer and Information Science and Engineering Directorate (CISE) invites proposals this year to the Faculty Early Career Development (CAREER) program for faculty engaging in Computing Education research. That is, if you apply for the CAREER program, you’ll be able to select “STEM-CP: CE21″ as your Unit of Consideration. The intent of the CAREER program (http://www.nsf.gov/career) is to provide stable support at a sufficient level and duration to enable awardees to develop careers as outstanding researchers and educators who effectively integrate teaching, learning and discovery.

CISE is organizing a one-day proposal writing workshop (registration and details at: http://cs.gmu.edu/events/nsfcisecareer2014/) for CAREER-eligible faculty on March 31, 2014 in Arlington, VA. The registration deadline is February 28th. Unlike past years, this will be the only CISE CAREER workshop during this calendar year. Please circulate this information among interested faculty. The next deadline for CISE CAREER proposals is July 21, 2014.

Please let me know if you have any questions or concerns.

Best,

Jeff

Jeffrey R.N. Forbes
Program Director
CISE/CNS Education and Workforce Cluster
National Science Foundation
jforbes@nsf.gov, +1 (919) 292-4291

February 20, 2014 at 3:41 pm Leave a comment

Papers and Presentations from Future Computing Education Research Agenda Summit

In early January, right after the NSF CE21 PI’s meeting, there was a summit on setting a Future Computing Education Research agenda.  The materials from that event are now being made available.

The conference web page has been updated so all presentations given during the meeting are linked to the agenda. http://stanford.edu/~kmenchac/FDS2014/schedule.html#agenda

The Stanford Digital Library is housing the white papers from our conference. We do not plan to have them published, although some or all may be referred to in the final report (which will be shared with you). http://purl.stanford.edu/mn485tg1952

 

February 6, 2014 at 1:44 am Leave a comment

Older Posts


Recent Posts

August 2014
M T W T F S S
« Jul    
 123
45678910
11121314151617
18192021222324
25262728293031

Feeds

Blog Stats

  • 939,002 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 3,002 other followers

CS Teaching Tips


Follow

Get every new post delivered to your Inbox.

Join 3,002 other followers