Posts tagged ‘perception of university’

Understanding CS Ed Research in The Soul of the Research University

The below-linked article is highly recommended.  It’s an insightful consideration of the different definitions of “University” we have in the US, and how the goals of helping students become educated for middle class jobs and of being a research university are not the same thing.

This article gave me new insight into the challenges of discipline-based education research, like computing education research.  We really are doing research, as one would expect in a research university, e.g., trying to understand what it means for a human to understand computation and how to improve that understanding.  But what we study is a kind of activity that occurs at that other kind of university.  That puts us in a weird place, between the two definitions of the role of a university.  It gives me new insight into the challenges I faced when I was the director of undergraduate studies in the College of Computing and when I was implementing Media Computation.  Education research isn’t just thrown over the wall into implementation.  The same challenges of technology adoption and, necessarily, technology adaption have to occur.

At the “TIME Summit on Higher Education” that the Carnegie Corporation of New York and Time magazine co-sponsored in September 2013 along with the Bill & Melinda Gates Foundation and the William and Flora Hewlett Foundation, the disconnect between the views of the research university from inside and outside was vividly on display. A procession of distinguished leaders of higher education mainly emphasized the need to protect—in particular, to finance adequately—the university’s research mission. A procession of equally distinguished outsiders, including the U.S. secretary of education, mainly emphasized the need to make higher education more cost-effective for its students and their families, which almost inevitably entails twisting the dial away from research and toward the emphasis on skills instruction that characterizes the mass higher-education model. Time’s own cover story that followed from the conference hardly mentioned research it was mainly about how much economically useful material students are learning, even though the research university was explicitly the main focus of the conference.

via The Soul of the Research University – The Chronicle Review – The Chronicle of Higher Education.

July 20, 2014 at 9:10 am 8 comments

A theory for why there’s so little CS Ed in the US

I have a theory that predicts when (if?) we will see more computing education research students in the US.  I think that it might also help understand when computer science education (e.g., an AP course in CS) might reach the majority of US high schools.

Why are there so few CS Ed research students in the US?

Recently, I hosted a visit from Dr. Nick Falkner (Associate Dean (IT), Faculty of Engineering, Mathematical and Computer Sciences) and Dr. Katrina Falkner (Deputy Head and Director of Teaching, School of Computer Science) from the University of Adelaide. We got to talking about the lack of CS education research (CER) graduate students in the United States. There are lots of PhD students studying CER in Australasia, Europe, and Israel. To offer a comparison point, when we visited Melbourne in 2011, they had just held a doctoral consortium in CS Ed with 20 students attending, all from just the Melbourne area. The ICER doctoral consortium at UCSD in August had 14 students, and not all 14 were from the US. The Australasian Computing Education will have its own DC, and they’re capping enrollment at 10, but there are far more CER PhD students than that in the region. I get invitations regularly to serve on review committees for dissertations from Australia and Europe, but rarely from the US.

Why is CER so much more popular among graduate students outside of the US? I’ve wondered if it’s an issue of funding for research, or how graduate students are recruited. Then it occurred to us.

Check out the Falkners’ titles: Associate Dean, Deputy Head (Katrina will be Head of School next year), Director. I remarked on that, and Nick and Katrina started naming other CS education research faculty who were Chairs, full Professors, and Deans and Directors in Australia. We went on naming other CS education researchers in high positions in New Zealand (e.g., Tim Bell, Professor and Deputy Head of Department), England (e.g., the great Computing Education Group at Kent), Denmark (e.g., Michael Caspersen as Director of the Center for Science Education), Sweden (e.g., CS Education Research at Uppsala), Finland, Germany, and Israel.

Then I was challenged to name:

  1. US CS Education researchers who are full Professors at research intensive universities;
  2. US CS Education researchers who are Chairs of their departments or schools;
  3. US CS Education researchers who are Deans or Center Directors.

I’m sure that there would be some quibbling if I tried to name US researchers in these categories. I don’t think anyone would disagree that none of these categories requires more than one hand to count — and I don’t think anyone needs more than a couple fingers for that last category.

We have great computing education researchers in the United States. Few are in these kinds of positions of visible prestige and authority. Many in the ICER community are at teaching institutions. Many who are at research intensive universities are in teaching track positions.

Computing Education Research is not as respected in US universities as it is in other countries. In these other countries, a graduate student could pursue computing education research, and might still be able to achieve tenure, promotion, and even an administrative position in prestigious institutions. That’s really rare in the United States.

There are many reasons why there isn’t more CER in research-intensive universities.  Maybe there’s not enough funding in CER (which is an outcome of lack of respect/value).  Most people don’t buy into computing for all in the US.  Unless there’s more CER in schools, maybe we don’t need much CER in Universities.  I’m actually not addressing why CER gets less respect in the US than in other countries — I’m hypothesizing a relationship between two variables because of that lack of respect.

The status of CER is definitely on the mind of students when they are considering CER as a research area. I’ve lost students to other areas of research when they realize that CER is a difficult academic path in the US. My first CS advisor at U-Michigan (before Elliot Soloway moved there) was strongly against my plans for a joint degree with education. “No CS department will hire you, and if they do, they won’t tenure you.” I succeeded into that first category (there was luck and great mentors involved).  It’s hard for me to say if my personal path could ever reach categories 2 or 3, and if barriers I meet are due more to my research area than my personal strengths and weaknesses.  All I can really say for sure is that, if you look around, there aren’t many CER people in those categories, which means that there is no obvious evidence to a graduate student that they can reach those kinds of success.

So, here’s my hypothesis:

Hypothesis: We will see more computing education research graduate students in the US when CER is a reasonable path to tenure, promotion, and advancement in research-intensive US universities.

Why is there so little computing education in US high schools?

Other countries have a lot more computing education in their high schools than we do in the United States.  Israel, New Zealand, Denmark, and England all have national curricula that include significant computer science.  In Israel, you can even pursue a software engineering track in high school.  They all have an advantage over the US, since we have no national curricula at all.  However, Germany, which has a similarly distributed education model, still has much more advanced computing education curricula (the state of Bavaria has a computing curriculum for grades 6-12) and CS teacher professional development.  What’s different?

I suspect that there are similar factors at work in schools as in Universities.  Computing education is not highly valued in US society.  That gets reflected in decisions at both the University and school systems.  I don’t know much about influence relationships between the University and the K-12 system. I have suggested that we will not have a stable high school CS education program in the United States without getting the Schools of Education engaged in teacher pre-service education. I don’t know how changes in one influence the other.

However, I see a strong correlation, caused by an external social factor — maybe some of those I mentioned earlier (not enough funding for CER, don’t need more CER, etc.). Professors and University administrators are not separate from their societies and cultures. The same values and influences are present in the University as in the society at large. What the society values has an influence on what the University values.  If a change occurs in the values in the society, then the University values will likely change.  I don’t know if it works in the other way.

So here’s where I go further out on a limb:

Second Hypothesis: We will see the majority of US high schools offering computer science education (e.g., AP CS) when CER is a reasonable path to tenure, promotion, and advancement in research-intensive US universities.

Here are two examples to support the hypothesis:

  • Consider Physics. No one doubts the value of physics. Within society, we’re willing to spend billions to find a Higgs Boson, because we value physics. Similarly, we strive to offer physics education to every high school student. Similarly, physics faculty can aspire to become Deans and even University Presidents. Physics is valued by society and the University.
  • Consider Engineering Education Research. Twenty years ago, engineering education research was uncommon, and it had little presence in K-12 schools. Today, there are several Engineering Education academic units in the US — at Purdue, Clemson, and Virginia Tech. (There’s quite a list here.) Engineering education researchers can get tenured, promoted, and even become head of an engineering education research academic unit. And, Engineering is now taught in K-12 schools. Recently, I’ve been involved in an effort to directly interview kids in schools that offer AP CS. We can hardly find any! Several of the schools in the Atlanta area that used to offer AP CS now offer Engineering classes instead. (Maybe the belief is that engineers will take care of our CS/IT needs in the US?)  Engineering has a significant presence in K-12 education today.

I don’t think that this hypothesis works as a prescriptive model.  I’m not saying, “If we just create some computing education research units, we’ll get CS into high schools!”  I don’t know that there is much more CS Ed in schools in Australia, Sweden, or Finland than in the US, where CER is a path to advancement. I  hypothesize a correlation.  If we see changes at the Universities, we’ll be seeing changes in schools.  I expect that the reverse will also be true — if we ever see the majority of US high schools with CS, the Universities will support the effort.  But I thnk that the major influencer on both of these is the perception of CER in the larger society.  I’m hypothesizing that both will change if the major influence changes.

(Thanks to Briana Morrison, Barbara Ericson, Amy Bruckman, and Betsy DiSalvo on an earlier draft of this post.)

October 28, 2013 at 1:48 am 45 comments

CS/IT higher-ed degree production has declined since 2003

I couldn’t believe this when Mark Miller sent the below to me.  “Maybe it’s true in aggregate, but I’m sure it’s not true at Georgia Tech.”  I checked.  And yes, it has *declined*.  In 2003 (summing Fall/Winter/Spring), the College of Computing had 367 graduates.  In 2012, we had 217.  Enrollments are up, but completions are down.

What does this mean for the argument that we have a labor shortage in computer science, so we need to introduce computing earlier (in K-12) to get more people into computing?  We have more people in computing (enrolled) today, and we’re producing fewer graduates.  Maybe our real problem is the productivity at the college level?

I shared these data with Rick Adrion, and he pointed out that degree output necessarily lags enrollment by 4-6 years.  Yes, 2012 is at a high for enrollment, but the students who graduated in 2012 came into school in 2008 or 2007, when we were still “flatlined.”  We’ll have to watch to see if output rises over the next few years.

Computer-related degree output at U.S. universities and colleges flatlined from 2006 to 2009 and have steadily increased in the years since. But the fact remains: Total degree production (associate’s and above) was lower by almost 14,000 degrees in 2012 than in 2003. The biggest overall decreases came in three programs — computer science, computer and information sciences, general, and computer and information sciences and support services, other.

This might reflect the surge in certifications and employer training programs, or the fact that some programmers can get jobs (or work independently) without a degree or formal training because their skills are in-demand.

Of the 15 metros with the most computer and IT degrees in 2012, 10 saw decreases from their 2003 totals. That includes New York City (a 52% drop), San Francisco (55%), Atlanta (33%), Miami (32%), and Los Angeles (31%).

via In the Spotlight: Higher Ed Degree Output by Field and Metro | Newgeography.com.

August 19, 2013 at 1:19 am 3 comments

Experiences with Media Computation at U. Adelaide

Katrina Falkner has written up an excellent reflection (with gorgeous example student work) on her new MediaComp course at the University of Adelaide.  I loved the artwork she shared, and I was particularly struck by the points she made about the value of “slowness” of the language, the challenges of helping students decontextualize programming after learning MediaComp, and the students complaining about using a curriculum “not invented here.”

The students didn’t really like working with Jython as it was very slow, but this had an unintended consequence, in that they became aware of the efficiency of their algorithms. I don’t think I have ever taught a first year course where students introduced efficiency as a discussion point on their own initiative. However, when working with their own images, which could sometimes be huge, they had to start thinking about whether there was a better way of solving their problems. I think this was a big win.

Creativity and ownership. The last assignment we ran was a group assignment, where the students had to develop a piece of art using and extending the techniques they had learnt in the course. This was fantastic. We had run a similar assignment in previous years where the students developed JavaScript games, and that worked reasonably well, but I think Media Computation produced a better result as the outcomes were more individual, and creative. The students had a lot more fun sharing their results.

via Experiences with Media Computation | Katrina Falkner.

August 14, 2013 at 1:08 am Leave a comment

The challenges of integrated engineering education

I spent a couple days at Michigan State University (July 11-12) learning about integrated engineering education. The idea of integrated engineering education is to get students to see how the mathematics and physics (and other requirements) fit into their goals of becoming engineers. In part, it’s a response to students learning calculus here and physical principles there, but having no idea what role they play when it comes to design and solving real engineering problems. (Computer science hasn’t played a significant role in previous experiments in integrated engineering education, but if one were to do it today, you probably would include CS — that’s why I was invited, as someone interested in CS for other disciplines.)  The results of integrated engineering education are positive, including higher retention (a pretty consistent result across all the examples we saw), higher GPA’s (often), and better learning (some data).

But these programs rarely last. A program at U. Massachusetts-Dartmouth is one of the longest running (9 years), but it’s gone through extensive revision — not clear it’s the same program. These are hard programs to get set up. It is an even bigger challenge  to sustain them.

The programs lie across a spectrum of integration. The most intense was a program at Rose-Hulman that lasted for five years. All the core first year engineering courses were combined in a single 12 credit hour course, co-taught by faculty from all the relevant disciplines. That’s tight integration. On the other end is a program at Wright State University, where the engineering faculty established a course on “Engineering Math” that meets Calculus I requirements for Physics, but is all about solving problems (e.g., using real physical units) that involve calculus. The students still take Calculus I, but later. The result is higher retention and students who get the purpose for the mathematics — but at a cost of greater disconnect between Engineering and mathematics. (No math faculty are involved in the Engineering Math course.)

My most significant insight was: The greater the integration, the greater the need for incentives. And the greater the need for the incentives, the higher in the organization you need support. If you just want to set up a single course to help Engineers understand problem-solving with mathematics, you can do that with your department or school, and you only have to provide incentives to a single faculty member each year. If you want to do something across departments, you need greater incentives to keep it going, and you’ll need multiple chairs or deans. If you want a 12 credit hour course that combines four or five disciplines, maybe you need the Provost or President to make it happen and keep it going.

Overall, I wasn’t convinced that integrated engineering education efforts are worth the costs. Are the results that we have merely a Hawthorne effect?  It’s hard to sustain integrated anything in American universities (as Cuban told us in “How Scholars Trumped Teachers”). (Here’s an interesting review of Cuban’s book.) Retention is good and important (especially of women and under-represented students), but if Engineering programs are already over-subscribed (which many in the workshop were), then why improvement retention of students in the first year if there is no space for them in the latter years? Integration probably leads to better learning, but there are deeper American University structural problems to fix first, which would reduce the costs in doing the right things for learning.

July 29, 2013 at 1:41 am 3 comments

Carl Wieman Finds Colleges Resist Measuring Teaching

I’ve just started my subscription to The Chronicle of Higher Education, and the first print issue I received had a great article about Carl Wieman, whom I have written about previously (here and here and here, for just three).  The story (online here: Crusader for Better Science Teaching Finds Colleges Slow to Change – Government – The Chronicle of Higher Education) was about his efforts to get the White House to measure teaching practices.

At the White House, Mr. Wieman tried to figure out what might actually get colleges and their faculty members to adopt proven teaching practices. His centerpiece idea was that American colleges and universities, in order to remain eligible for the billions of dollars the federal government spends annually on scientific research, should be required to have their faculty members spend a few minutes each year answering a questionnaire that would ask about their usual types of assignments, class materials, student interaction, and lecture and discussion styles.

Mr. Wieman believed that a moment or two of pondering such concepts might lead some instructors to reconsider their approaches. Also, Mr. he says, data from the responses might give parents and prospective students the power to choose colleges that use the most-proven teaching methods. He hoped the survey idea could be realized as either an act of Congress or a presidential executive order.

I hadn’t heard about this survey, but my immediate thought was, “What a great idea!”  We need better ways to measure teaching (like with Sadler’s recent work), and this seems like a great first step.  I was surprised to read the response

College leaders derided it as yet another unnecessary intrusion by government into academic matters.

“Linking federal funding for scientific research to pedagogical decisions of the faculty would have set a terrible precedent for policy makers,” said Princeton University’s Shirley M. Tilghman, one of several presidents of major research institutions who wrote to the White House to complain about Mr. Wieman’s idea. “It is naïve to think that the ‘surveys’ will not have consequences down the line.”

Wouldn’t “consequences” be a good thing?  Shouldn’t we reward schools that are doing more to improve teaching and adopt better practices?  Shouldn’t we incentivize schools to do better at teaching?  I guess I’m the one who is naïve — I was surprised that there was so much resistance.  In the end, Wieman lost the battle.  He’s now left the White House, dealing with multiple myeloma.

Perhaps the saddest line in the piece is this one:

“I’m not sure what I can do beyond what I’ve already done,” Mr. Wieman says.

Is it really impossible to get universities to take teaching seriously?

 

July 12, 2013 at 1:05 am 12 comments

New book: “A practical guide to gender diversity for CS faculty”

Diana Franklin has just published a new book with Morgan & Claypool, A Practical Guide to Gender Diversity for Computer Science Faculty.  This is exciting to see.  I can’t recommend it yet, just because I haven’t read it. What’s great is that it’s a book on how to teach computing — and there are just far too few of those.  Other than the Logo books and the Guide to Teaching CS (from Orit Hazzan et al.), there’s not much to help new CS teachers.  So glad that Diana has written this book!

Computer science faces a continuing crisis in the lack of females pursuing and succeeding in the field. Companies may suffer due to reduced product quality, students suffer because educators have failed to adjust to diverse populations, and future generations suffer due to a lack of role models and continued challenges in the environment. In this book, we draw on the latest research in sociology, psychology, and education to first identify why we should be striving for gender diversity (beyond social justice), refuting misconceptions about the differing potentials between females and males. We then provide a set of practical types (with brief motivations) for improving your work with undergraduates taking your courses. This is followed by in-depth discussion of the research behind the tips, presenting obstacles that females face in a number of areas. Finally, we provide tips for advising undergraduate independent projects or graduate students, supporting female faculty, and initiatives requiring action at the institutional level (department or above).

via Morgan & Claypool Publishers – Synthesis Lectures on Professionalism and Career Advancement for Scientists and Engineers – 1(2):1 – Abstract.

June 3, 2013 at 1:42 am 2 comments

Survey finds presidents are skeptical on MOOCs

Interesting results!  My President is gung-ho on MOOCs (e.g., sending email out saying that half of the University System of Georgia schools will cease to exist in their current form over the next five years), as is my Provost and my Dean (who sends articles about MOOCs to the faculty weekly).  Maybe that’s not so common?

“Based on these findings, it’s clear that the U.Va. situation is just a canary in the coal mine,” said Brandon H. Busteed, executive director of Gallup Education. “College presidents, writ large, are extremely skeptical about the value of MOOCs as it relates to reducing cost, improving quality, and even expanding reach. And with governing boards that have strong business backgrounds and have been reading all of Clay Christensen’s writing about how online education and MOOCs will change the world, there’s bound to be big clashes ahead at most — not just some — institutions.”

via Survey finds presidents are skeptical on MOOCs | Inside Higher Ed.

May 29, 2013 at 1:28 am 3 comments

Duke University Leaves Semester Online: Questions about long-term effects

Semester Online sounded like a nice idea — getting liberal arts focused institutions to share their online course offerings.  The pushback is interesting and reflects some of the issues that have been raised about sustainability of online education as a replacement for face-to-face learning or even as an additional resource.

While Dr. Lange saw the consortium as expanding the courses available to Duke students, some faculty members worried that the long-term effect might be for the university to offer fewer courses — and hire fewer professors. Others said there had been inadequate consultation with the faculty.

When 2U, the online education platform that would host the classes, announced Semester Online last year, it named 10 participants, including Duke, the University of Rochester, Vanderbilt and Wake Forest — none of which will be offering courses this fall. “Schools had to go through their processes to determine how they were going to participate,” said Chance Patterson, a 2U spokesman, “and some decided to wait or go in another direction.”

via Duke University Leaves Semester Online – NYTimes.com.

May 23, 2013 at 1:05 am 2 comments

Why does the US have so many of the world’s smartest students?

Useful piece that helps to explain how the US can be doing so well in terms of education and so awful at the same time.  The problem is our enormous variance, in part explain by our enormous size.  Averages are way different than individuals.

Part of this is easy to explain: The United States is big. Very big. And it’s a far bigger country than the other members of the OECD. We claim roughly 27 percent of the group’s 15-to-19-year-olds. Japan, in contrast, has a smidge over 7 percent. So in reading and in science, we punch above our weight by just a little, while in math we punch below.

But the point remains: In two out of three subjects, Americans are over-represented among the best students.

If we have so many of the best minds, why are our average scores so disappointingly average? As Rutgers’s Hal Salzman and Georgetown’s B. Lindsay Lowell, who co-authored the EPI report, noted in a 2008 Nature article, our high scorers are balanced out by an very large number of low scorers. Our education system, just like our economy, is polarized.

via You’ll Be Shocked by How Many of the World’s Top Students Are American – Jordan Weissmann – The Atlantic.

May 20, 2013 at 1:24 am 2 comments

UIUC Plans to Add 500 Full-Time Professors: Says “Nyah-Nyah” to MOOCopalypse

I’m guessing that the regents at the University of Illinois at Urbana-Champaign does not think that “the end of the University” is near.  At least, not in the next five to seven years.

The University of Illinois at Urbana-Champaign announced this week that it would hire about 500 new full-time, tenure-track faculty members in the next five to seven years.

The hiring spree follows years of budget shortfalls that limited hiring at the university, including one year in which hiring was frozen campuswide. University officials now want to restore the total number of full-time faculty members to a level closer to what the campus had in 2007, just before the recession hit.

The hires will be made in two ways, said Barbara J. Wilson, executive vice provost for faculty and academic affairs. Some new hires will fill traditional roles in academic departments. Others will be hired in clusters.

The “cluster hires,” Ms. Wilson said, will be sorted into the six areas that have been identified by the university’s “Visioning Future Excellence at Illinois” project, an effort begun by the chancellor to map out the university’s needs for the future. The review focused on two questions: “What are society’s most pressing issues?” and “What distinctive and signature role can Illinois play in addressing those issues in the next 20 to 50 years?”

via U. of Illinois at Urbana-Champaign Plans to Add 500 Full-Time Professors – Faculty – The Chronicle of Higher Education.

May 2, 2013 at 1:43 am 3 comments

Universities should stand by core values

Rich DeMillo emphasizes in his book Abelard to Apple that higher education institutions need to differentiate themselves, to avoid being a commodity.  I think Amherst College is doing that, in being articulate in their core values and choosing not to partner with any MOOC companies.

“It’s not something they reject totally,” Martin said in a telephone interview, referring to the faculty’s online ambitions. “They just don’t want to do it right now through a firm that may or may not end up allowing us to do what our core values suggest we do in the form of teaching and learning.”

via Despite courtship Amherst decides to shy away from star MOOC provider | Inside Higher Ed.

April 23, 2013 at 1:10 am 1 comment

Selective colleges getting super-selective: But a college degree isn’t worth anything

When I read about the burgeoning applications to colleges, I’m reminded of the claim that college degrees aren’t worth anything and that higher education is completely broken.

Stanford offered admission to 2,210 students via electronic notification today, producing – at 5.69 percent – the lowest admit rate in University history.…On Thursday, several peer institutions also reported historically low admit rates. Harvard, Yale, Columbia and Princeton admitted 5.8, 6.72, 6.89 and 7.29 percent of applicants respectively.

via Selective colleges getting super-selective | Gas station without pumps.

April 17, 2013 at 1:53 am 9 comments

Resolved: Academic CS will never meet the needs of the IT Profession

Would love to be in London on 12 June to hear this debate!  The blurb describing the debate does a balanced job of laying out the questions.

“This house believes that Academic Education will never meet the skills needs of the IT Profession”

‘Universities are failing to educate graduates with the skills we need’ – this is the oft heard complaint by employers of IT graduates. Does the problem start in school with the dire state of ICT teaching and assessment at GCSE and A Level? Should academia be trying to produce graduates with only ‘employable skills’ that have a shelf life of at best a couple of years? Are employers really expecting universities to produce a mature, rounded professional with 20 years experience straight out of university? Is it reasonable to expect Academia to bridge the skills gap when employers are not prepared to provide a robust career path for IT professionals?

via Oxford Union Style Debate | Events | Learning and Development Specialist Group | Specialist Groups | Member Groups | Membership | BCS – The Chartered Institute for IT.

April 16, 2013 at 1:23 am 1 comment

David Brooks on the Practical University – NYTimes.com

David Brooks considers the role of the university in today’s society in the United States, and how those responsibilities might be shared across online and face-to-face education.  A more reasonable response than the MOOCopalypse.  Recommended.

Are universities mostly sorting devices to separate smart and hard-working high school students from their less-able fellows so that employers can more easily identify them? Are universities factories for the dissemination of job skills? Are universities mostly boot camps for adulthood, where young people learn how to drink moderately, fornicate meaningfully and hand things in on time?My own stab at an answer would be that universities are places where young people acquire two sorts of knowledge, what the philosopher Michael Oakeshott called technical knowledge and practical knowledge.

via The Practical University – NYTimes.com.

April 15, 2013 at 1:30 am 2 comments

Older Posts


Recent Posts

Feeds

July 2014
M T W T F S S
« Jun    
 123456
78910111213
14151617181920
21222324252627
28293031  

Blog Stats

  • 926,400 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,961 other followers


Follow

Get every new post delivered to your Inbox.

Join 2,961 other followers