Archive for November 1, 2012
How do CS students make educational decisions? Previewing Mike Hewner’s PhD Defense
Mike Hewner may be the most technically adept student with whom I’ve worked — he’s a former Senior Software Engineer from Amazon. He’s written probably the most intensely qualitative dissertation of any student with whom I’ve worked. Mike used a grounded theory approach with 37 interviews. The amount of analysis and coding he did is staggering.
His question is one that impacts all computer science teachers. We know (from lots of sources) that students don’t really understand computer science. Mike set out to document how students’ misunderstandings lead them astray in their CS undergraduate degree program, e.g., avoiding some classes because they misunderstood what they were about, or pursuing some specialization because they thought it was something that it really wasn’t. The surprising result was that he didn’t really find evidence of that. Instead, students simply trusted the curriculum — they didn’t know what was coming, but they didn’t worry about it.
As I learned from Mike’s process, grounded theory results in a “theory,” i.e. a description of a mechanism. Mike’s theory describes how students make educational decisions. His theory tells us that factors that shouldn’t really matter (like whether the intro course is at 8 am) do impact decisions like whether to pursue CS as a major. I’ll give away Mike’s punchline: Students use “enjoyment” to decide if they have an affinity for a subject. They turn the question “Should I be a CS major? Am I good at it?” into “Did I enjoy my CS class? Did I enjoy another class more?” They don’t really distinguish between “I have a hard time understanding functions” and “The class was at 8 am” or “That was a lousy teacher.” Not enjoyment means no affinity, which means look for something else. Once students decide that they have an affinity for something, they do develop a more goal-based decision making process — they’ll stick through the hard classes, because it helps them achieve the goal of the degree that they’ve decided that they have an affinity for.
Mike is defending on Friday — I’m really looking forward to it. I heard the practice talk Tuesday and was impressed. Assuming all goes well, Mike will be joining Rose-Hulman in the Spring.
Title: Student Conceptions About the Field of Computer ScienceMichael HewnerHuman-Centered ComputingSchool of Interactive ComputingCollege of ComputingGeorgia Institute of TechnologyDate: Friday, November 2, 2012Time: 1:00-4:00pmLocation: TSRB 132Committee:————-Prof. Mark Guzdial (Advisor, College of Computing, Georgia Instituteof Technology)Prof. Amy Bruckman (College of Computing, Georgia Institute of Technology)Prof. Keith Edwards (College of Computing, Georgia Institute of Technology)Prof. Ellen Zegura (College of Computing, Georgia Institute of Technology)Prof. Yasmin Kafai (School of Graduate Education, University of Pennsylvania)Abstract:————-Computer Science is a complex field, and even experts do not alwaysagree how the field should be defined. Though a moderate amount isknown about how precollege students think about the field of CS, lessis known about how CS majors’ conceptions of the field develop duringthe undergraduate curriculum. Given the difficulty of understandingCS, how do students make educational decisions like what electives orspecializations to pursue?This work presents a theory of student conceptions of CS, based on 37interviews with students and student advisers and analyzed with agrounded theory approach. Students tend to have one of three mainviews about CS: CS as an academic discipline focused on themathematical study of algorithms, CS as mostly about programming butalso incorporating supporting subfields, and CS as a broad disciplinewith many different (programming and non-programming) subfields. Ihave also developed and piloted a survey instrument to determine howprevalent each kind of conception in the undergraduate population.I also present a theory of student educational decisions in CS.Students do not usually have specific educational goals in CS andinstead take an exploratory approach to their classes. Particularlyenjoyable or unenjoyable classes cause them to narrow theireducational focus. As a result, students do not reason very deeplyabout the CS content of their classes when they make educationaldecisions.This work makes three main contributions: the theory of studentconceptions, the theory of student educational decisions, and thepreliminary survey instrument for evaluating student conceptions.This work has applications in CS curriculum design as well as forfuture research in the CS education community.
Recent Comments