Archive for September 16, 2016
Learning Curves, Given vs Generated Subgoal Labels, Replicating a US study in India, and Frames vs Text: More ICER 2016 Trip Reports
My Blog@CACM post for this month is a trip report on ICER 2016. I recommend Amy Ko’s excellent ICER 2016 trip report for another take on the conference. You can also see the Twitter live feed with hashtag #ICER2016.
I write in the Blog@CACM post about three papers (and reference two others), but I could easily write reports on a dozen more. The findings were that interesting and that well done. I’m going to give four more mini-summaries here, where the results are more confusing or surprising than those I included in the CACM Blog post.
This year was the first time we had a neck-and-neck race for the attendee-selected award, the “John Henry” award. The runner-up was Learning Curve Analysis for Programming: Which Concepts do Students Struggle With? by Kelly Rivers, Erik Harpstead, and Ken Koedinger. Tutoring systems can be used to track errors on knowledge concepts over multiple practice problems. Tutoring systems developers can show these lovely decreasing error curves as students get more practice, which clearly demonstrate learning. Kelly wanted to see if she could do that with open editing of code, not in a tutoring system. She tried to use AST graphs as a sense of programming “concepts,” and measure errors in use of the various constructs. It didn’t work, as Kelly explains in her paper. It was a nice example of an interesting and promising idea that didn’t pan out, but with careful explanation for the next try.
I mentioned in this blog previously that Briana Morrison and Lauren Margulieux had a replication study (see paper here), written with Adrienne Decker using participants from Adrienne’s institution. I hadn’t read the paper when I wrote that first blog post, and I was amazed by their results. Recall that they had this unexpected result where changing contexts for subgoal labeling worked better (i.e., led to better performance) for students than keeping students in the same context. The weird contextual-transfer problems that they’d seen previously went away in the second (follow-on) CS class — see below snap from their slides. The weird result was replicated in the first class at this new institution, so we know it’s not just one strange student population, and now we know that it’s a novice problem. That’s fascinating, but still doesn’t really explain why. Even more interesting was that when the context transfer issues go away, students did better when they were given subgoal labels than when they generated them. That’s not what happens in other fields. Why is CS different? It’s such an interesting trail that they’re exploring!
Mike Hewner and Shitanshu Mishra replicated Mike’s dissertation study about how students choose CS as a major, but in Indian institutions rather than in US institutions: When Everyone Knows CS is the Best Major: Decisions about CS in an Indian context. The results that came out of the Grounded Theory analysis were quite different! Mike had found that US students use enjoyment as a proxy for ability — “If I like CS, I must be good at it, so I’ll major in that.” But Indian students already thought CS was the best major. The social pressures were completely different. So, Indian students chose CS — if they had no other plans. CS was the default behavior.
One of the more surprising results was from Thomas W. Price, Neil C.C. Brown, Dragan Lipovac, Tiffany Barnes, and Michael Kölling, Evaluation of a Frame-based Programming Editor. They asked a group of middle school students in a short laboratory study (not the most optimal choice, but an acceptable starting place) to program in Java or in Stride, the new frame-based language and editing environment from the BlueJ/Greenfoot team. They found no statistically significant differences between the two different languages, in terms of number of objectives completed, student frustration/satisfaction, or amount of time spent on the tasks. Yes, Java students got more syntax errors, but it didn’t seem to have a significant impact on performance or satisfaction. I found that totally unexpected. This is a result that cries out for more exploration and explanation.
There’s a lot more I could say, from Colleen Lewis’s terrific ideas to reduce the impact of CS stereotypes to a promising new method of expert heuristic evaluation of cognitive load. I recommend reviewing the papers while they’re still free to download.
Recent Comments