Embedding and Tailoring Engineering Learning: A Vision for the Future of Engineering Education
March 15, 2017 at 6:00 am 5 comments
In the last couple of months, I have had the opportunity to speak to groups of Engineering Education Researchers. That doesn’t happen often to me, and I feel very fortunate to get that chance.
I was asked to speak about my vision for the future of Engineering Education, from my perspective as a Computing Education Researcher. What I said wasn’t wholly unique–there are Engineering Education Researchers who are already working on some of the items I described. The response suggested that it was at least an interesting vision, so I’m telling the story here in blog form.
For readers of this blog who may not be familiar with Engineering Education Research, the Wikipedia page on EER is pretty good. The most useful paper I read is Borrego and and Bernhard’s “The Emergence of Engineering Education Research as an Internationally Connected Field of Inquiry.” I also recommend looking around the Purdue Engineering Education department website, which is the oldest Eng Ed department in the US.
Engineering has had a long relationship with computing. Engineers made computing part of their practice earlier and more pervasively than scientists or mathematicians. I love how this is described in the motion picture Hidden Figures where Octavia Spencer’s character is part of the effort to use computing as soon as possible in the American space program. Engineering educators have made computing part of the learning goals for all of today’s engineering students, again more pervasively than what I can see in science or mathematics programs.
Much of my work and my students’ work is about embedding computing education (e.g., Media Computation which embeds computing in the digital media context that students value, or Brian Dorn’s work embedding computing in a graphic design context) and tailoring computing education (e.g., high school CS teachers need something different from software developers). Computing education can be embedded in Engineering classes and tailored for Engineering students, of course. My vision is about embedding and tailoring engineering education.
There are three parts to the story below:
- Engineering Education for everyone K-16, especially for STEM learners.
- Reaching a diverse audience for engineering education.
- Recognizing the differences between Engineering Education research and teaching, and the need for more research on learning outside of the engineering classroom.
In January 2016, President Barack Obama launched the “CS for All” initiative. When he said that he wanted students to be “job-ready,” he wasn’t saying that everyone should be a software engineer. Rather, he was reflecting a modern reality. For every professional software developer, there are four-to-nine end-user-programmers (depending on the study and how you count). Most professionals will likely use some form of programming in the future. That’s an argument for “CS for All.”
We also need Engineering for All. Engineering skills like designing, planning, collaboration on diverse teams, and trouble-shooting are needed across STEM. When I look at bench science, I see the need for engineering — to design, plan, collaborate, debug, and test.
Engineering education researchers know a lot about how to teach those skills. I’d love to learn how to inculcate some engineering perspectives in my CS students. When I see Chemical Engineering students designing a plant, or Civil Engineering students designing a bridge, they predict that they made mistakes, and they look for those mistakes. There’s a humility about their process. CS students often run their program once and turn them in. If you write a hundred lines of code, odds are almost 100% that you made errors. How do we get CS students to think that way?
Engineering for All is different than what professional engineers do, in the same way that what a high school teacher needs is different than what a professional software developer needs. Both need a mental model of the notional machine. A high school teacher also needs to know how students get that wrong, and probably doesn’t need to know about Scrum or GitHub.
I believe that there is a tailored part of engineering education which should be embedded throughout K-16 STEM. The American Society of Engineering Education’s mission is focused on professional engineers, and my proposal does not diminish the importance of that goal. We need more professional engineers, and we need to educate them well. But engineering skills and practices are too important to teach only to the professionals.
Engineering should play a significant role in STEM education policy. Engineering education researchers should own that “E” in STEM. There are many research questions that we have to answer in order to achieve Engineering for All.
- What is the tailored subset of engineering that should be taught to everyone? To STEM learners?
- All technically literate US citizens should know far more about engineering than they do today. Here’s a hypothesis: If all US citizens understood what engineering is and what engineers do, we might have less crumbling infrastructure, because we citizens would know that infrastructure is critical and professional engineers design, build, and maintain infrastructure. How do we get there?
- All K-12 students should have the opportunity to fall in love with engineering. How?
- Are there limits to what we can teach about engineering in K-16? What learning and cognitive disabilities interfere with learning engineering, and what parts of engineering? I also wonder about the kinds of bias that prevent someone from succeeding in engineering, besides race and gender. For example, here in the South, there are a lot of students who don’t believe in evolution. I’m pretty sure that belief in evolution isn’t necessary for designing a bridge or a distillation column. But someone who believes in intelligent design is going to face a lot of barriers to getting through basic science to become an engineer. Is that how it should be?
- Engineering should aim to influence K-12 STEM education nationally, in every state.
The American University (particularly the Land Grant University, developed in the late 1800’s) was supposed to blend the German University focus on research and the British focus on undergraduate education. My favorite history of that story is Larry Cuban’s How Scholars Trumped Teachers, but Michael Crow also tells the story well in his book Designing the New American University. We believed that there were synergies between research and teaching. It’s not clear that that’s true.
Research and teaching have different measures of success and don’t feed directly into one another.
Teaching should be measured in terms of student success and at what cost. Cost is always a factor in education. We know from Bloom’s two-sigma 1984 study (and all the follow-ups and replications) that the best education is an individual human tutor for each subject who works with a student to mastery. But we as a society can’t afford that. Everything else we do is a trade-off — we are trying to optimize learning for the cost that we are willing to bear.
Research should be measured in terms of impact — on outcomes, on the research community, on society.
It’s quite likely that the education research on a given campus doesn’t influence teaching practice on the same campus.
I see that in my own work.
- The best of Media Computation is no longer at Georgia Tech. Beth Simon and Leo Porter at UC San Diego have done better studies and are inventing cool interventions like MediaComp art galleries. Cynthia Lee at Stanford has created MediaComp for multiple languages. Celine Latulipe built on Beth and Leo’s work to implement lightweight teams in her MediaComp course.
- Subgoal labeling totally works (see Lauren’s dissertation or Briana’s dissertation). Coursera uses it in some of their videos. Rob Miler at MIT has picked it up. But there are very few CS classes using it.
We can see the transition for education research idea to impact in teaching practice as an adoption curve. Boyer’s “Scholarship Reconsidered” helps to explain what’s going on and how to support the adoption. There is traditional Scholarship of Discovery, the research that figures out something new. There is Scholarship of Teaching that studies the practice of teaching and learning.
Then there’s Scholarship of Application, which takes results from Discovery into something that teachers can use. We can’t expect research to influence teaching without scholars of application. Someone has to take the good ideas and carry them into practice. Someone has to figure out what practitioners want and need and match it to existing research insights. Done well, scholarship of application should also inform researchers about the open research questions, the challenges yet to be faced.
High-quality teaching for engineering education should use the most effective evidence-based teaching methods.
Good teachers balance teaching for relevance and motivation with teaching for understanding. This is hard to do well. Students want authenticity. They want project-based learning and design. I was at the University of Michigan as project-based learning for science education was first being developed, and we knew that it very often didn’t work. It’s often too complex and leads to failure, in both the project and the learning. Direct instruction is much more efficient for learning, but misses out on the components that inspire, motivate, and engage students. We have to balance these out.
We have to teach for a diverse population of students, which means teaching differently to attract women and members of under-represented groups. In our ICER 2012 paper, we found that encouragement and self-perception of ability are equally important for white and Asian males in terms of intention to persist in computing, but for women and under-represented group students, encouragement matters more than ability in terms of how satisfied they are with computing and intention to persist. This result has been replicated by others. Encouragement of individual students is critical to reach a diverse audience.
An important goal for a first year Engineering program is to explain the relevance of the classes that they’re taking. Larry Cuban tells us that a piece of the British system that got lost by the early 1920’s in the American University was having faculty advisors who would explain how all the classes fit together for a goal. The research on common first year Engineering courses (e.g., merging Physics, Calculus, Engineering in a big 12 credit hour course) shows that they worked because they explained the relevance of courses like Calculus to Engineering students. I know from my work that relevance is critical for retention and transfer.
Do students see relevance of first year Engineering programs? Most first year programs emphasize design and team problem-solving. First year Engineering students don’t know what engineers do. When they’re told “This is Engineering” in their first year, do they believe it? Do they cognitively index it as “real Engineering”? Do they remember those experiences and that learning in their 3rd and 4th years when they are in the relevant classes? I hope so, but I don’t know of evidence that shows us that they do.
Engineering education research, like most discipline-based education research (DBER), is focused on education. I see the study of “education” as being about implementation in a formal system. Education is a design discipline, one of Simon’s Sciences of the Artificial. Robert Glaser referred to education as psychology engineering.
We need more research on Engineering Learning. How do students learn engineering skills and practices, even outside of Engineering classes? How do those practices develop, even if it’s STEM learners and teachers using them and not professional engineers? How should we best teach engineering even if it’s not currently feasible?
That last part is much of what drives my work these days. We’re learning a lot about how great Parsons Problems are for learning CS. Very few CS classes use them. There are reasons why they don’t (e.g., they’re emphasizing the project side of the education spectrum). I’m figuring out how to teach CS well, even if it’s not feasible in current practice. CS teaching practice will eventually hit a paradigm shift, and I’ll have evidence-based practices to offer.
To focus on engineering learning requires work outside the classroom, like Multi-Institutional, Multi-National (MIMN) studies that we use in computing education research, or even laboratory studies. A focus on Engineering Learning creates new opportunities for funding, for audience, and for impact. For example, I could imagine engineering education researchers seeking science education funding to figure out how to teach high school science teachers the engineering that they ought to teach their students — not to introduce engineering, but to make their students better in science.
My vision for engineering education has three parts:
- K-16 STEM learners need Engineering for All. Engineering education has more to contribute than just for producing more professional Engineers. Engineering education ought to own the “E” in STEM education policy. Engineering skills and practices can be tailored to different audiences and embedded in STEM education.
- Reaching a diverse audience is critical for both research and teaching. For me, that diversity includes the people who need engineering education who aren’t going to become professional engineers, but also people who look different or even have different beliefs.
- Finally, research and teaching are different activities, with different measures of success. Teaching should be informed by evidence and be as efficient and effective as possible for a given cost. We need evidence for what we’re doing, and we should gather evidence if we don’t know if what we’re doing is working. Research should focus on what’s possible and on having impact, even if that impact isn’t in the on-campus classrooms. We shouldn’t expect research to impact teaching without explicit investment in adaptation to support adoption.
(Thanks to Barb Ericson, Beth Simon, Leo Porter, and Wendy Newstetter for advice on drafts of this piece.)
Entry filed under: Uncategorized. Tags: computing education research, engineering education, engineering education research, Media Computation, STEM education.
1.
Doug Holton | March 15, 2017 at 7:55 am
Well said! There are models and practices underlying engineering, computer science, and other disciplines that can be beneficial for all students in all disciplines. Think of all the things in common between the scientific method, the engineering design cycle, and instructional design models, for example. Perhaps there is or could be some kind of taxonomy or list of thinking and problem-solving patterns that could more concretely capture the key literacies we think are important for students and society, something beyond Bloom’s taxonomy.
Regarding the scholarship of application (vs. discovery and teaching), others have written about the same issue in the healthcare domain: “The fundamental problem with the quality of American medicine is that we’ve failed to view delivery of health care as a science. The tasks of medical science fall into three buckets. One is understanding disease biology. One is finding effective therapies. And one is ensuring those therapies are delivered effectively. That third bucket has been almost totally ignored by research funders, government, and academia. It’s viewed as the art of medicine. That’s a mistake, a huge mistake. And from a taxpayer’s perspective it’s outrageous.” ” (Peter Provonost as quoted in http://www.newyorker.com/magazine/2007/12/10/the-checklist )
And I think there is a key principle underlying many of your suggestions for improving the success of engineering students and students and teachers in other domains: situated learning (vs. decontextualized learning). Students should never be unsure about why they are having to learn something. They need a ‘raison d’etre’ as Sasha Barab has written about. Engineering students come to the university wanting to work as an engineer for Boeing or SpaceX, etc. That’s their ‘why’. Research has shown though that decontextualized gateway courses such as Calculus hurt students’ attitudes and persistence (see research by David Bressoud and others). One situated learning strategy that has addressed this issue to some extent without requiring redesigning calculus at all is Wright State’s Math for Engineers course: https://engineering-computer-science.wright.edu/research/engineering-mathematics/the-wright-state-model-for-engineering-mathematics-education
Students take that BEFORE taking the traditional math classes, and it shows students how the math they will learn will be used in later engineering courses and contexts. Students who took this course went from a 60% to an 89% pass rate.
Another key principle for student success in engineering and elsewhere is related to metacognition and mindset. Even if students have the ‘why’, they may not have the ‘how’ or believe that they have the ‘how’. And here another type of course has shown great success. A course that teaches students things like how learning works, study skills, time management, growth mindset, help-seeking skills, etc. Students who took a Learning to Learn course were 30% more likely to graduate: http://www.ltl-college.com/ Students at Ohio State who took a Learning and Motivation Strategies course were 45% more likely to graduate: http://researchnews.osu.edu/archive/lrngclas.htm
I list those 2 courses and other strategies for improving student retention and graduation rates in this handout: http://bit.ly/studentsuccessstrategies
2.
Increasing the Roles and Significance of Teachers in Policymaking for K-12 Engineering Education | Computing Education Blog | May 12, 2017 at 7:01 am
[…] National Academies have released a report that relates to the idea of Engineering for All. […]
3.
6 Stories of Failure in Changing Higher Education: Misunderstanding Organizational Context | Computing Education Blog | October 9, 2017 at 7:01 am
[…] Spring, I got the chance to visit three engineering education programs, all of which have engineering education PhD students. I wondered whether we could build something […]
4.
Will be missing my friends at SIGCSE 2018 — Preparing for What’s Next | Computing Education Research Blog | February 2, 2018 at 7:01 am
[…] may not be as big a part of my academic life, depending on what comes next for me. I may do more Engineering Education Research in the future. I may get more involved in preparing future CS teachers. My research directions […]
5.
Teasing out the meaning of “online classes” — Online Courses Are Harming the Students Who Need the Most Help: NYTimes | Computing Education Research Blog | February 12, 2018 at 7:00 am
[…] every student well — give each child a well-educated teacher for their particular subject (Bloom’s two-sigma effect). We can’t afford that, so we make do with less. But we should aim to do no harm. Current […]