6 Stories of Failure in Changing Higher Education: Misunderstanding Organizational Context

October 9, 2017 at 7:00 am Leave a comment

Last month, I had a birthday. It was not one of those big end-with-a-zero birthdays, but it was still notable. I can now get “senior” discounts from my local grocer. That’s something. Coincidentally, this month also begins my 25th year at Georgia Tech.

I’ve been reading about failure CV’s, a list of the usually-invisible things that go wrong in an academic’s career. The goal is to show that failure is quite common and that success is often a matter of luck. I’m not sure I can remember all my failed papers and proposals. I can remember a list of failures that relate to both my “senior” age and my years at Georgia Tech.

Below is a list of stories where I failed in an organizational context. In each of these, I proposed something that didn’t fly because I didn’t understand the organizational structure of higher education in general and Georgia Tech specifically. This isn’t a comprehensive list. I failed a lot more than this! I’m picking stories that offer lessons I’ve learned about the challenges of making educational initiatives in higher education, especially ones that I expect are useful in other organizations. I’m listing these in roughly chronological order.

Short form: Other computing educators may want to try these things. Didn’t work for me, and here’s why. Avoid my mistakes.

Entrepreneurial activity in education research often requires organization action or change, like new courses, new degree programs, adopting new teaching practices, or starting to teach a new population. I’ve been successful at some of this, like starting the Media Computation class and offering a variety of learning opportunities through “Georgia Computes!” Think of the stories in this list as startup ideas or business plans that don’t convince venture capitalists. These didn’t take off because I didn’t understand the market or the investors.

Side note: I’m also writing this for catharsis. Failures in organizational contexts are more painful than proposal or paper rejections. First, organizational failures are not anonymous — you are associated with the proposal, and you usually get the “no” to your face. Second, they gnaw at me. Could it have gone differently if I’d pitched it differently? To a different person? Maybe I could pitch it today and it would be different? Or is too late because the organization remembers that I already had my shot?

Story #1: A Computer Science Education Research Center

About 15 years ago, I wrote a memo proposing a Computer Science Education Research Center. (Yes, I still have it.) We had (and have) great computing education researchers, a large cohort of instructional faculty, and tons of students. The idea was to identify problems in the classrooms, develop solutions collaboratively between tenure-track faculty researchers and instructional faculty, try them out in the classrooms, and then publish and iterate. It was all about using our classrooms and students as a giant design-based research laboratory.

I’ve seen this work at places like UCSD, Duke, Stanford, and U. Toronto. It didn’t fly here, for reasons that are obvious in hindsight. The instructional faculty did not want tenure-track faculty telling them how to teach. The tenure-track faculty do not understand everything that it takes to keep huge classrooms running week-after-week, semester-after-semester. What happens when there are disagreements? There would likely be an awkward tension because of power relationships between tenure-track and instructional faculty.

The instructional faculty at Georgia Tech’s College of Computing have been overwhelmingly helpful with our Computing Education Research. Between encouraging their students to participate in our experiments, to letting us into their classrooms for observations, our lecturers and instructors support computing education research. I deeply appreciate their support. But it’s too big of an ask to have instructors change their teaching practice, or harder still, to implement an intervention in one semester and deny the intervention to another section of the same class (as a control/comparison).

I think it works at UCSD, Duke, Stanford, and U. Toronto because the instructional faculty are the computing education researchers. Changing your own courses for reasons you appreciate and value is different than doing it because researchers in a Center ask it of you. Doing it collaboratively (maybe even using some classes as control/comparisons) can lead to great research. It doesn’t work as well when the change comes from someone(s) other than the teacher.

In the end, what I proposed flew in the face of academic freedom. That faculty can teach using the methods that they think is best is a core principal in academic freedom. That’s a big part of what makes this job attractive. With rising numbers of students to teach and too few CS PhD’s becoming academics these days, we need to make the job more attractive, not add more restrictions.

Story #2: The Weight of Teacher Development Regulations

During the early years of Georgia Computes!, we realized that preparing more computing teachers was going to be critical to success. Barbara and I were part of a statewide committee to create a computer science teacher endorsement. I wanted Georgia Tech to offer computer science education classes towards certification for teachers with a goal of being a provider for the endorsement. I was particularly eager for us to use on-line learning technologies, so that teachers in other states (maybe even in other countries?) might use this program. I was sure that the name of “Georgia Tech” would help to sell the program to teachers.

My Chair (head of my School) told me that it was a bad idea, and he would not support my proposal. His reasoning was simple — we didn’t have a School of Education. Any kind of program that leads to a teaching certification involves a lot of regulation and paperwork. Georgia Tech didn’t have any programs like that. The regulatory and bureaucratic costs would have been totally new and likely large.

He was right. Three Universities eventually offered the endorsement in Georgia. All three did it through a collaboration between the Computer Science departments and existing Schools of Education. If your university is already doing teacher certification, adding computer science is a marginal cost. If your university wasn’t, you likely don’t know what you’re getting into. Now that I know more about how different states handle teacher certification, I realize how much of the process is defined by state regulation and legislation. I should have figured out the cost of my proposal before I made it.

Story #3: Apprenticeship and Conscience over Diversity Efforts

Several years ago, I became aware of teaching practices in one of our classes that I believed were likely impacting retention of female students (as mentioned in this blog post). I didn’t have any evidence that the practices were impacting retention. I critiqued the practices as an opinion of a researcher who studies diversity in computing education. I wanted to change our teaching practices in introductory CS courses in order to improve retention of women following recommendations of groups like NCWIT. I was unsuccessful.

When I first realized that there was a problem, I approached senior tenure-track faculty in my school. I described the practices I was concerned with — and they were unconcerned. The practices I described were pretty common in industry. But what about changing practices, maybe changing industry, trying to make industry more welcoming for women? I was running into a conflict that I’d seen in my faculty workshops. There are five common perspectives on what a teacher should be. I tend to take a “social reform” perspective (let’s use school to change society) or a “developmental” perspective (let’s start from where students are). But the most common teaching perspective among the CS faculty I’ve queried is “apprenticeship” — the job of the CS teacher is to model good software development behavior and to coach students in following those practices. In that perspective, it’s more important to teach current industry practice than to try to change what’s in industry. One perspective is not better than the other. “Apprenticeship” is a valid perspective for teaching CS, and I get the argument.

I had lunch with one of our most senior instructors, and I raised my concerns. He told me that he was worried about women going into the Tech industry. He went on to talk about the working conditions and how there were much better jobs for women. I was angry, thinking that he was saying that women couldn’t do these jobs or didn’t belong in Computing. I later reflected on what he said, and realized that my first reaction was wrong.

He was having a crisis of conscience, I now believe. Our instructors pay attention to what’s going on at Uber and at Google much more than the average tenure-track faculty. The instructors see their jobs as producing students who will go work in the Tech industry. My colleague was saying that he didn’t want to send women there, given how they’d be treated and what the Tech industry is like.

I don’t know what to tell him. When I tell women this story, they often ask, “Who is he to say what women should or shouldn’t do?” Fair response, but being concerned about what students should or shouldn’t do, or even having to decide who belongs and who should be encouraged to leave CS — that’s an occupational hazard of being a CS teacher. They make those decisions every day.

The lesson learned from this story is that I didn’t think hard enough about the forces that keep things the way they are, the motivations of the decision-makers. I didn’t think about my market before I pitched my product.

Story #4: The Tensions between State Governments and State Universities

In 2014, the Georgia Governor announced that he was making an initiative to push coding in Georgia’s schools (see my blog post here on that announcement). The next year, we had a terrific CS Education faculty candidate. My chair and I came up with an idea. We wanted to ask the Governor to fund an effort to innovate and promote coding in Georgia schools, building on our successful work in “Georgia Computes!” We wanted funding to hire this CS Ed candidate as part of this effort. We drew up a one-page pitch to the Provost, and a draft letter to the Governor (in our Provost’s name) to make the request. Our Dean took these to a face-to-face meeting with the Provost.

The next day, my chair and I received a reprimand from the upper administration for contacting the Governor without permission! Somewhere there was a misunderstanding, because we had not contacted anyone in state government. My chair cleared things up with the Provost, and we learned why there was such a strong reaction.

I had not realized how sensitive relationships are these days between state universities and state governments. States are providing less funding to their universities. Universities are understandably careful about what they ask for. Georgia Tech desperately needed a new building at the time. The Provost did not want to send mixed signals to the state government. For example, he didn’t want to give them the idea that the coding in Georgia initiative would be preferable to the building they needed.

I get it. Relations between state governments and universities are strained. You don’t want a rogue faculty member messing up the priorities, and you certainly have to be careful what you put on the wishlist. I didn’t realize that I was touching on such a sensitive negotiation.

Story #5: Teaching High School Students does not pay for MOOCs

Last year, I decided the best chance to get computer science into Georgia’s rural high schools was not Advanced Placement but dual enrollment. I told this story on Blog@CACM. I started the process of building a MOOC that would be equivalent to our CS1315 Media Computation class to offer to Georgia high school students as dual enrollment. We already have distance Calculus offered to rural high schools from Georgia Tech, but that’s delivered via special video links. I wanted to do a MOOC so that it could be more widely available.

The head of distance learning said no. MOOCs are expensive to build. We only build them if we can see a way to cover those costs. We couldn’t recoup the costs if we offered the MOOC to high school students.

Turns out that the Georgia legislature has capped the amount that universities can charge for dual enrollment tuition, and that amount does not cover Georgia Tech’s costs for MOOC development and hosting. Our head of online learning is trying to get that changed, to get the cap raised. Offering a CS MOOC for dual enrollment under those conditions would be a bad move in that negotiation.

I understand the issue. While the OMS CS is famous for being inexpensive, it’s not free. The financial model that we have for online education doesn’t work for high school students, which does have to be essentially free. We are now offering an online MOOC-based CS1 for CS majors, but that was paid for by an external funder. Maybe if I found an external funder, Georgia Tech would be willing to let me develop the MOOC. However, even the new CS1 MOOC is not available to Georgia high school students for dual enrollment. The political issue has not been resolved.

The lesson here is (again) that I should have figured out the costs of my proposal before I pitched it. I should have also figured out the politics before we started. A 10 minute conversation with the head of online education would have saved weeks of planning.

Story #6: Education Research can be Dangerous for Well-Ranked Technical Institutions

Last Spring, I got the chance to visit three engineering education programs, all of which have engineering education PhD students. I wondered whether we could build something similar here. There are several efforts on our campus to study STEM education, to be innovative in STEM education, and to evaluate novel interventions. These efforts have graduate students, and it would be great to be able to offer them a graduate certificate or even a degree. I asked the Provost for a meeting to discuss creating a STEM education research graduate certificate or degree.

The Provost started the meeting saying that there would never be a degree or academic unit at Georgia Tech with the word “education” in the title. He explained that education research is outside the unique mission of Georgia Tech. There are other education programs in the University System of Georgia. They can do STEM education research. The Georgia Institute of Technology should focus on technological advances.

I told my Dean this story, and he gave me new insight into the Provost’s motivations. The Dean thought that “never” was too strong, but he did have a specific criteria about whether to back this kind of an effort. “Which of our peer institutions has a STEM education research graduate certificate?” Georgia Tech (and the College of Computing) is well ranked. You have to be careful with that kind of ranking. You want to innovate, but you don’t want to do things that might make your peers think you’re weakening your research focus. Education research might be perceived as taking resources from technological research. It would be okay to do, if we didn’t go first.

I had not really thought through how Deans and Provosts evaluated new programs. They have a sense of mission, and new program proposals are evaluated against that mission. I should have tried to figure out the criteria first, before I made my proposal.

Conclusions

After the last story, one of the other Deans kindly reached out me. He told me, “Never is a long time.” Institutions change. Missions evolve. I am a post-Full Professor (as I described here). He suggested that I wait. There will be more opportunities for change later.

So what does work for higher education change? There’s another whole blog post to write about how Media Computation, Threads, and Georgia Computes actually worked, but I can generalize as the inverse of the above failures. Before you make a pitch like one of these, think about the motivations of the decision-makers. “It will improve learning” is rarely motivating for a higher-education administrator. “It will improve retention” is also unlikely to win, unless the low retention rate is a cost (e.g., students failing a required class may mean more students re-take the class, which costs in future enrollments). Fixing a known problem, reducing costs, improving stature, bringing in additional resources, and increasing fame — those are motivators for administrators and other higher-education decision-makers.

Mitchel Resnick has a new book out on Lifelong Kindergarten (see Amazon link). The interview with him on NPR about the new book is terrific. I particularly like Mitchel’s final quote, and it’s an apt conclusion to these stories:

I sometimes describe myself as a short-term pessimist and a long-term optimist.

I know how difficult it is to shift systems and mindsets. But I see the needs of societies changing so much, that the kinds of approaches in the book make so much sense, that ultimately we’ll win out. It’s what keeps me going. I’ve dedicated my life to this.

Entry filed under: Uncategorized. Tags: , , , .

Disrupt This!: MOOCs and the Promises of Technology by Karen Head The state of women in computer science: An investigative report, featuring Barbara Ericson

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Trackback this post  |  Subscribe to the comments via RSS Feed


Recent Posts

October 2017
M T W T F S S
« Sep    
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Feeds

Blog Stats

  • 1,438,889 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 5,154 other followers

CS Teaching Tips


%d bloggers like this: