Social studies teachers programming, when high schools choose to teach CS, and new models of cognition and intelligence in programming: An ICER 2019 Preview

August 12, 2019 at 7:00 am Leave a comment

My group will be presenting two posters at ICER this year.

  • Bahare Naimipour (Engineering Education Research PhD student at U-Michigan) will be presenting our participatory design session with social studies educators, Helping Social Studies Teachers to Design Learning Experiences Around Data–Participatory design for new teacher-centric programming languages. We had 18 history and economics teachers building data visualizations in either Vega-Lite or JavaScript with Google Charts. Everyone got the starter visualization running and made changes that they wanted in less than 20 minutes. Those who started in Vega-Lite also tried out the JavaScript code, but only about 1/4 of the JS groups moved to Vega-Lite successfully.
  • Miranda Parker (Human-Centered Computing PhD student at Georgia Tech) will be presenting her quantitative model explaining about half of the variance in whether Georgia high schools taught CS in 2016, A Statewide Quantitative Analysis of Computer Science: What Predicts CS in Georgia Public High School. The most important factor was whether the school taught CS the year before, suggesting that overcoming inertia is a big deal — it’s easier to sustain a CS program than start one. She may talk a little about her new qualitative work, where she’s studying four schools as case studies about their factors in choosing to teach CS, or not.

Barbara is co-author on a paper, A Spaced, Interleaved Retrieval Practice Tool that is Motivating and Effective, with Iman Yeckehzaare and Paul Resnick . This is about a spaced practice tool that 32% of the students in an introductory programming course used more than they needed to, and the number of hours of use had a measurable positive effect on the final exam grade.

All of our other papers were rejected this year, but we’re in good company — the accept rate was around 18%. But I do want to talk about a set of papers that will be presented by others at ICER 2019. These are papers that I heard about, then I asked the authors for copies. I’m excited about all three of them.

How Do Students Talk About Intelligence? An Investigation of Motivation, Self-efficacy, and Mindsets in Computer Science by Jamie Gorson and Eleanor O’Rourke (see released version of the paper here)

One of the persistent questions in computing education research is why growth mindset interventions are not always effective (see blog post here). We get hard-to-interpret results. I met Jamie and Nell at the Northwestern Symposium on Computer Science and the Learning Sciences in April (amazing event, see here for more details). Nell worked with Carol Dweck during her graduate studies.

Jamie and Nell found mixed mindsets among the CS students that they studied. Some of the students they studied had growth mindsets about intelligence, but their talk about programming practices showed more fixed mindset characteristics. Other students self-identified as having some of both growth and fixed mindset beliefs.

In particular, some students talked about intelligence in CS in ways that are unproductive when it came to the practice of programming. For example, some students talked about the best programmers as being able to write the whole code in one sitting, or never getting any errors. A more growth mindset approach to programming would be evidenced by talking about building programs in pieces, expecting errors, and improving through effort over time.

This is a really helpful finding. It gives us new hypotheses to explore about why growth mindset interventions haven’t been as successful in CS as in other disciplines. Few disciplines have this strong distinction between their knowledge and their practice as acutely as we do in CS. It’s no wonder that we see these mixed mindsets.

Toward Context-Dependent Models of Productive Knowledge in Programming Cognition, by Brian A. Danielak

I’ve known Brian since he was a PhD student, and have been hoping that he’d start to publish some of his dissertation work. I got to read one chapter of it, and found it amazingly insightful. Brian explained how what we might see as a “random walk” of syntax was actually purposeful and rational behavior. I was excited to hear about this paper, and I enjoyed reading it.

It’s such an unusual paper for ICER! It’s empirical, but has no methods section. A big part of it is connecting to prior literature, but it’s not about a formal literature review.

Brian is making an argument about how we characterize knowledge and student success in CS. He points out that we often talk about students being wrong and having misconceptions, which is less productive than figuring out what they understand and where their alternative conceptions work or fail. I see his work following on to the work of Rich et al. (mentioned in this blog post) on CS learning trajectories. There are so many things to learn in CS, and sometimes, just getting started on the trajectory is a big step.

Spatial Encoding Strategy Theory: The Relationship between Spatial Skill and STEM Achievement by Lauren Margulieux.

Lauren is doing some impressive theoretical work here. She’s considering the work exploring the relationship between spatial reasoning and CS learning/performance, then constructs a theory explaining the observed results. Since it’s Lauren, the theory is thorough and covers well the known results in this space. I wrote her that I didn’t think that theory explains things that we expect are related to spatial reasoning, but we don’t yet have empirical evidence to support it. For example, when programmers simulate a program in their mind, their mental models may have a spatial component to them, but I don’t know of empirical work that explores that dimension of CS performance. But again, since it’s Lauren, I wouldn’t be surprised if her presentation addresses this point, beyond what was in the paper. (Also, read Lauren’s own summary of the paper here.)

I am looking forward to the discussion of these papers at ICER!

Entry filed under: Uncategorized. Tags: , , , , .

Let’s think more broadly about computing education research: Questions about alternative futures Summarizing findings about block-based programming in computing education

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Trackback this post  |  Subscribe to the comments via RSS Feed


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 7,062 other followers

Feeds

Recent Posts

Blog Stats

  • 1,690,987 hits
August 2019
M T W T F S S
« Jul   Sep »
 1234
567891011
12131415161718
19202122232425
262728293031  

CS Teaching Tips


%d bloggers like this: