Archive for June 29, 2020

Subgoal labelling influences student success and retention in CS

I have written a lot about subgoal labeling in his blog. Probably the best way to find it all is to see the articles I wrote about Lauren’s graduation (link here) and Briana’s (link here). They have continued their terrific work, and have come out with their most impressive finding yet.

In work with Adrienne Decker, they have shown that subgoal labeling reduces the rate at which students fail or drop out of introductory computer science classes: “Reducing withdrawal and failure rates in introductory programming with subgoal labeled worked examples” (see link here). The abstract is below.

We now have evidence that subgoal labelling lead to better learning, better transfer, work in different languages, work in both text and block-based programming languages, and work in Parsons Problems. Now, we have evidence that their use leads to macro effects, like improved student success and retention. We also see a differential impact — the students most at risk of failing are the ones who gain the most.

This is a huge win.

Abstract

Background: Programming a computer is an increasingly valuable skill, but dropout and failure rates in introductory programming courses are regularly as high as 50%. Like many fields, programming requires students to learn complex problem-solving procedures from instructors who tend to have tacit knowledge about low-level procedures that they have automatized. The subgoal learning framework has been used in programming and other fields to breakdown procedural problem solving into smaller pieces that novices can grasp more easily, but it has only been used in short term interventions. In this study, the subgoal learning framework was implemented throughout a semester-long introductory programming course to explore its longitudinal effects. Of 265 students in multiple sections of the course, half received subgoal-oriented instruction while the other half received typical instruction.

Results: Learning subgoals consistently improved performance on quizzes, which were formative and given within a week of learning a new procedure, but not on exams, which were summative. While exam performance was not statistically better, the subgoal group had lower variance in exam scores and fewer students dropped or failed the course than in the control group. To better understand the learning process, we examined students’ responses to open-ended questions that asked them to explain the problem-solving process. Furthermore, we explored characteristics of learners to determine how subgoal learning affected students at risk of dropout or failure.

Conclusions: Students in an introductory programming course performed better on initial assessments when they received instructions that used our intervention, subgoal labels. Though the students did not perform better than the control group on exams on average, they were less likely to get failing grades or to drop the course. Overall, subgoal labels seemed especially effective for students who might otherwise struggle to pass or complete the course.

Keywords: Worked examples, Subgoal learning, Programming education, Failure rates

June 29, 2020 at 7:00 am 8 comments


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 10,185 other subscribers

Feeds

Recent Posts

Blog Stats

  • 2,060,426 hits
June 2020
M T W T F S S
1234567
891011121314
15161718192021
22232425262728
2930  

CS Teaching Tips