Archive for July 27, 2020

Proposal #2 to Change CS Education to Reduce Inequity: Make the highest grades achievable by all students

What does an “A” mean in your course? The answer likely depends on why you teach. Research on teacher beliefs suggests that grading practices are related to teachers’ reasons for teaching. Joe Feldman points out that our grading relates to who we are as teachers, and it is passionately held:

Conversations about grading weren’t like conversations about classroom management or assessment design, which teachers approached with openness and in deference to research. Instead, teachers talked about grading in a language of morals about the “real world” and beliefs about students; grading seemed to tap directly into the deepest sense of who teachers were in their classroom.

Feldman, Joe. Grading for Equity (pp. xix-xx). SAGE Publications. Kindle Edition.

I’ve used the Teacher Perspectives Inventory (TPI) (see link here) with dozens of CS teachers. The most common teaching perspective I see among CS teachers is “Apprenticeship.” CS faculty see themselves as preparing future software developers. They value demonstrating and modeling good software practices. An “A” for an apprenticeship teacher is likely to indicate that the student produces good code. An “A” is reserved for “excellence” (as one CS teacher told me recently). An “A” indicates that the student has risen above his or peers in producing “high quality products” (as another CS teacher posted on Facebook recently). An “A” means that, in this teacher’s opinion, the student is recommended to go on to a highly-desired software development job, perhaps at a place like Google or Amazon.

A student with less computing background is much less likely to earn an “A” in an Apprenticeship-oriented class. If you bring more experience to the table, you have a head start on producing higher-quality products than other students in the class. Their products are more likely to be marked as “excellent.”

In my opinion, the teacher attitude of “rugged individualism” defined in SIGCSE 2020 paper by Hovey, Lehmann, and Riggers-PiehlLinking faculty attitudes to pedagogical choicesmeshes with the TPI category of “Apprenticeship.” “Rugged individualism” teachers believe that “learning and success are the individual student’s responsibility.” (Hovey et al did not make this claim or compute the correlation — this is my prediction.) They showed that teachers who believe in “rugged individualism” are less likely to use student-centered teaching practices and more likely to lecture. Students with less computing background do better with student-centered teaching practices.

This is my third post in a series about how we have to change how we teach computing to reduce inequity (see last post). The series has several inspirations, but the concrete one that I want to reference back to each week is the statement from the University of Maryland’s CS department:

Creating a task force within the Education Committee for a full review of the computer science curriculum to ensure that classes are structured such that students starting out with less computing background can succeed, as well as reorienting the department teaching culture towards a growth mindset

The style of grading that means to identify “talent” or “excellence” is inherently inequitable. It presumes a fixed mindset. If you believe that there is a random distribution of “talent” or “ability” or “Geek Gene” in the course, and (critically), there’s nothing much that teaching can do to change that, then it makes sense to grade to the curve. There can be only a few “A” slots, more “B” slots, and so on. Empirical evidence suggests the opposite — good teaching can trump a lot of other factors. Belief in a growth mindset leads to better learning outcomes and better performance. If we value teaching, and believe that students can get better at computer science, then over time, we should teach better and students should learn more. If students learn more, they should get a higher grade It’s not a fixed-result game.

Measure learning or progress towards objectives, not code quality

My teacher perspective is that we are in the job of maximizing individual human development. It’s our job to help each student achieve as much as they can within our discipline. We should measure achievement in terms of learning, not product quality. I tend to align with the “nurturing” perspective on the TPI, but that’s not what I’m going to argue for here.

It is not at all the same thing to grade for excellence and to grade for learning. Writing code isn’t the same as learning. We have evidence that writing a given piece of code is not indicative of understanding that piece of code. The recent ITiCSE 2020 paper by Jean Sala and Diana Franklin showed that use of a given code construct was not correlated well with understanding of that code construct (see paper here).

I mentioned in the last post that I’m reading Grading for Equity by Joe Feldman (see his website here). He points out all the other factors that influence grades that have nothing to do with learning. Some of these extra-curricular factors — like the ability to meet deadlines that presume privileged, full-time student status without outside pressures — are less likely for Black, Hispanic, poorer, or first-generation college students. These factors influence the production of high-quality code even more than they influence learning. These pressures are going to be even greater during a time of a pandemic.

We should give grades depending how much is learned in a given course. That’s hard to do without measuring students as they enter the course and as they leave the course, and grading on the delta. There is a movement suggesting that “labor-based grading” leads to more compassionate and equitable grading (see article here). I’m not arguing for that.

State your criteria clearly and be objective in grading

I’m arguing that we aim for a Teaching Perspective most closely aligned with the one called “Transmission.” The goal of a Transmission teacher is for students to learn what is needed for the next course or to meet the course objectives. Assessments of understanding should be as objective as possible. Grades should represent achievement of the learning objectives and nothing else.

There is a lot in any given CS course that is not about preparing students for the next course in the sequence. We cover a lot of material. In some courses, we’re preparing students for the imagined technical interview with Google or Amazon. That’s not fair to require understanding and performance on standards that go beyond the course objectives.

I recommend setting the objectives clearly, announcing them on the first day, and grading to those. It’s okay to aim for the targeted average on each assignment to be low but passing (e.g., a “C”), as long as you’re clear and fair. In my classes, I rely heavily on weekly quizzes because those are more likely to lead to learning (see post here). I give points for writing code, but that’s to encourage the activity, not to make-or-break the students’ grade. Programming is for learning, and the quizzes, midterm, and final exam are assessments.

Go ahead and bore your best students

Students with a lot of computing background get an easy “A” in my courses. That’s fine. I expect that. I explicitly tell my students that I teach to the bottom third of the course. I want to move B and C students up into A’s and B’s. I give out a lot of A’s. In years past, I did a series of blog posts on “Boredom vs Failure” (here’s the first post in the series, and here’s the last one). The question is: which is worse, to bore and give easy A’s to the most privileged and most prepared students, or to fail (or discourage to the point that they drop) the students with less privilege and the least computing background? Think about the students who might fail or drop out in a system that makes sure that the most well prepared students are challenged. Each one of those students who continues on does more to change the status quo than does keeping the more privileged students from getting bored. Helping the students with less computing background succeed makes a much bigger difference for society long-term than does keeping entertained the most privileged students.

One response to this proposal is that I’m degrading the value of past A’s. The A’s don’t mean the same thing anymore. That’s true. I take a historical perspective. Those A’s were earned when the students with less computing background were not being taught with methods that helped them succeed (Proposal #1). Those A’s were earned in unfair competition, where the students with prior computing background were compared to students with less computing background. I’m proposing a more just system where the students with less computing background have a chance at the highest grades, where they’re taught in ways that meet their needs, and where their teachers believe that they can grow and improve. I’m not particularly concerned about preserving the past glories of those who won in an unjust system.

If we pre-allocate, ration, or otherwise curve “down” grades so that the top scores are a scarce resource in a competitive system, we are privileging the most prepared students and disadvantaging the least prepared students. I am proposing differentiated instruction. Teach explicitly for the least-prepared students. You will likely have to give up on pushing your top students to greater excellence — that’s the kind of privilege which we have to be willing to surrender. Aim to help every student achieve their potential, and if you have to make a choice, make choices in favor of the students with less privilege and less computing background.

July 27, 2020 at 7:00 am 13 comments


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 9,005 other followers

Feeds

Recent Posts

Blog Stats

  • 1,878,977 hits
July 2020
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  

CS Teaching Tips