Archive for January, 2021

Broadening Participation in Computing is Different in Every State: Michigan as an Example

In December, Rick Adrion, Sarah T. Dunton, Barbara Ericson, Renee Fall, Carol Fletcher, and I published an essay in Communications of the ACM, “U.S. States Must Broaden Participation While Expanding Access to Computer Science Education.” (See link here, and pre-print available at the bottom of this post.). Rick, Renee, Barb, and I were the founders of the ECEP Alliance which helps states and US territories with their computing education policy and practices. Carol is now the PI on ECEP (which feels so great to say — ECEP continues past the founders, with excellent leadership) — the whole leadership team is here. Sarah likely knows more about state-level computing education policy than anyone else in the US. She has worked with individual teams in individual states for years. Our argument is that broadening participation and expanding access are not the same thing. Simply making CS classes available doesn’t get students into those classes. We tell the story of two states (Nevada and Rhode Island) and how CS Ed is growing there.

Barbara and I now live in Michigan. The CSTA, Code.org, and ECEP report 2020 State of Computer Science Education: Illuminating Disparities (see link here) has a sub-report for every US state. Michigan is on page 56. The press release for the 2020 report says that 47% of US high schools now offer CS. Michigan is at 37%. Michigan is the only state (as far as I can tell) that used to have CS teacher certification and pre-service CS but got rid of it (story here).

Also in December, Michigan Department of Education (MDE) released the first “State of Computer Science in Michigan Report” (see link here). The data collection and writing on the report was led by Aman Yadav and Sarah Gretter of Michigan State with Cheryl Wilson of MDE. A quote from page 11: “The trend of declining course offerings continues at the high school level where even fewer high schools offer CS courses. Code.org course offering data suggests that only 23.7% of rural high schools, 28% of town high schools, 29.1% of sub-urban high schools, and 21.7% of city high schools offer CS.” (The numbers on the website are lower than these — Aman and Cheryl kindly sent me an early peek at a revision that they’re posting soon.)

MDE’s numbers are a lot lower than the 37% in the Code.org/CSTA/ECEP report. What’s going on here? My best guess is that CS is rare enough in Michigan that not everybody who fills out a survey knows what the national CS education movement means by “computer science.” We had this a lot in the early days of “Georgia Computes,” too. A principal would say that they teach CS, when they might mean Microsoft Office or Web design (with no HTML, CSS, or JavaScript).

In any case, Michigan is clearly below national averages on providing CS education to its citizens and creating sustainable CS education policy. How do we help Michigan progress in providing computing education to its citizens?

I don’t know. Aman, Barb, and I have had conversations about the potential for growing CS Ed in Michigan. We don’t have the same leverage points in Michigan that we have had in other ECEP states. Michigan is a local control state. Individual local education agencies (LEA’s — sometimes a school district, sometimes a county-wide collection of districts) can make up their own rules on important issues like CS teacher certification. In Georgia and South Carolina, the state government has a lot of control in education, so there was a point of leverage. California is also a local control state, but the California University systems are important to all high schools, so that’s a point of influence. Massachusetts is again a local control state, but the Tech industry is very important to the Boston area, and that’s important to the state. Tech isn’t important in the same way in Michigan. If you read the MDE report, there’s a lot of ambivalence about CS in the state. Administrators aren’t that excited about teaching CS. They don’t see CS education as important for their students. Michigan is a big state, where agriculture and tourism are two of the most significant industries. Manufacturing is a big deal, but manufacturing workers don’t necessarily need to know much about computing. CS isn’t an obvious benefit to much of Michigan.

Aman’s strategy is to grow CS education in the state slowly, to develop pockets of value for CS and success in teaching CS. We have to plant seeds and grow to a critical mass, which seems like the right approach to me. He has projects where he is helping develop teachers and relevant curriculum for CS education in specific counties. He works closely with the MDE. Sarah is involved with Apple’s Developer Academy to open in Detroit (see story here). Michigan does have a powerful and large teacher’s group supporting educational technology, MACUL (Michigan Association for Computer Users in Learning, see website), which could be a significant player in growing CS education in the state.

The important point here is that, in the United States, growing CS education is a state-by-state challenge. Each state has its own story and issues.

Pre-print of CACM BPC article

January 21, 2021 at 7:00 am Leave a comment

Promote diversity by teaching to many goals for computing

My Blog@CACM post for this month is about the working definitions of computing that we are developing in a task force at the University of Michigan see post here). We are charged with identifying the computing education needs for undergraduates in the College of Literature, Sciences, and the Arts (LS&A). My post describes three different goals for computing education, based on what LS&A faculty do with computing and what they want their students to know.

  • Computing for Discovery
  • Computing for Expression
  • Critical Computing

In my post, I described how these are different, and about the challenges of meeting all of these educational needs. The biggest challenge I wonder about is the organizational one. Whose job is it to teach to each of these goals?

In this post, I want to argue from a different direction. All of these have a CS component. These aren’t typically priorities in many CS departments. To have more diversity in computer science, we ought to make them a priority.

There’s CS in All of These

Each of the three LS&A themes represent a significant CS research thrust. We distilled them from discussions with faculty in Literature, Sciences, & the Arts, but students could be interested in these themes and seek a computer science degree and career. I’d expect that these themes are more common among students who enter computing from liberal arts and sciences than from engineering.

Computer scientists often create infrastructure and theory for “Computing for Discovery,” from NeurIPS to ACM SIGSIM. At Georgia Tech, there is a School for Computational Science and Engineering. One of my colleagues in that school was Richard Fujimoto, who studied how to run discrete event simulations in parallel and distributed systems. He does his research so that others (scientists or engineers) could do theirs.

Computer scientists invent and create tools to make “Computing for Expression” possible, presented in places like ACM SIGGRAPH and CHI. Alanson Sample joined U-M CSE the same time I did. He was formerly at Disney Research at Pittsburgh, where some of his team worked on the new Pandora exhibits at Disney World. The animatronic Na’vi were difficult for the animators to control, since the robot representation of the aliens were not meant to be human-like. Alanson’s colleagues created new kinds of design tools to support translating facial animations into robotic actuation for the Na’vi. I love that as an example of computer science enabling a new kind of expression.

Technology Review recently published an accessible summary of the paper that led to Timnit Gebru’s being fired from Google (see link here). I knew about Timnit’s work as a scholar in “Critical Computing.” The TR piece did a terrific job explaining the deep CS ideas in their paper — like the potential fallacies of the language models used by Google and the enormous energy costs of running them. Computer science plays an important part in making thoughtful critiques of existing computing systems and infrastructures.

Supporting Diverse Goals for Diverse Students

Imagine that you are a student who has always dreamed of working at Pixar and building tools for animators. Or you are a student who is concerned about creating sustainable IT infrastructure for your community. You decide to pursue a computer science degree, and now you’re in classes about AVL trees or learning the issues between cache coherence and memory consistency. You might very reasonably drop out, to pursue a degree that move clearly helps you better achieves your goals. The problem is that that those are computer science issues. It’s perfectly reasonable to pursue computing education for those goals, but those might not be the goals that most CS Departments at Universities support.

This does happen exactly as I described. Colleen Lewis and her colleagues showed us how it most often happens with candidates who are from groups under-represented in computer science (see blog about the paper here). These students come to computer science with their goals, and if they don’t see how to achieve their goals with the classes they’re given, they lose interest and drop out. Colleen and her students showed that having goals about community values were were more common among students who were female, Black, or Hispanic than students who were male, white, or Asian.

The draft of the 2020 ACM/IEEE Computing Curriculum report is here. It’s a big document, so I might have missed it, but I don’t see these goals represented in the computer science outcomes. Some of these themes are in information systems or information technology. Some of the media fundamentals are in computer engineering. The core of computer science in the 2020 report is focused on “algorithms and complexity, programming languages, software development fundamentals, and software engineering” (quoting page 28). There is very little in the document about justice, equity, and critical consideration of our computing systems and infrastructure.

A student can certainly start from the core of CS and focus on any of these sets of goals — but do students know that? How do we communicate that to them? This was a real problem when we created the Threads program at Georgia Tech where students identify two “threads” of computing which they will combine to create their BS in CS degree program. A student who chooses Media and Theory may be interested in video compression algorithms, and a student who chooses People and Intelligence might be interested in creating explainable AI, but both of those students will be in the same data structures and discrete math classes. We (mostly Charles Isbell and Bill Leahy) made sure that the foundational classes created the narratives that explained how the foundational concepts connected to these Threads. We wanted students to see how their goals were met by the core of CS.

This might be easier in colleges focused on liberal arts and sciences with smaller classes. At my University, I taught the introduction to computing course to 760 students. We regularly have first year CS courses with over 1000 students. It’s very hard to cater to individual student goals at that scale. What we did at Georgia Tech and what we’re doing in our task force at the University of Michigan is to identify common goals and themes, and provide support and narrative for those. We will not reach all students’ goals. We aim to support more student goals than just software development in large Tech firms.

We do our students a disservice if we do not help them see how they can pursue their goals within our undergraduate programs. A computer science degree from a major University is a big deal. It’s worth a lot in the economic marketplace. Is it fair to deny the degree to students who are engaged and curious about computer science because our CS undergraduate programs focus on one set of goals and ignore the others? Computer science is broader than just what the FAANG companies hire. CS undergraduate degree programs should not just be a Silicon Valley jobs program. Universities should support diversity in CS thoughts and goals if we want to have students from diverse backgrounds in computing.

January 11, 2021 at 7:00 am 2 comments


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 9,004 other followers

Feeds

Recent Posts

Blog Stats

  • 1,875,390 hits
January 2021
M T W T F S S
 123
45678910
11121314151617
18192021222324
25262728293031

CS Teaching Tips