Analyzing CS in Texas school districts: Maybe enough to take root and grow

My Blog@CACM for this month is about Code.org’s decision to shift gradually the burden of paying for CS professional development to the local regions — see link here.  It’s an important positive step that needs to happen to make CS sustainable with the other STEM disciplines in K-12 schools.

We’re at an interesting stage in CS education. 40-70% of high schools have CS, but the classes are pretty empty.  I use Indiana and Texas as examples because they’ve made a lot of their data available.  Let’s drill a bit into the Texas data to get a flavor of it, available here.  I’m only going to look at Area 1’s data, because even just that is deep and fascinating.

Brownsville Intermediate School District. 13,941 students. 102 in CS.

Computer_Science_Regional_Data___STEM_Center___The_University_of_Texas_at_Austin

Of the 10 high schools in Brownsville ISD, only two high schools have anyone in their CS classes.  Brownsville Early College High School has 102 students in CS Programming (no AP CS Level A, no AP CSP).  That probably means that one teacher has several sections of that course — that’s quite a bit.  The other high school, Porter Early College High School has fewer than five students in AP CS A.  My bet is that there is no CS teacher there, only five students doing an on-line class.  That means for 10 high schools and 13K students, there is really only one high school CS teacher.

Edinburg Consolidated Independent School District, over 10K students, 92 students in CS.

Computer_Science_Regional_Data___STEM_Center___The_University_of_Texas_at_Austin-3

This is a district that could grow CS if there was will.  There are 6 high schools, but two are special cases: One with less than 5 students, and the other in a juvenile detention center.  The other four high schools are huge, with over 2000 students each.  In Economedes, that are only 9 students in AP CS A — maybe just on-line?  Edinburg North and Robert R Vela high school each have two classes: AP CS A and CS1.  With 21 and 14, I’m guessing two sections.  The other has 43 and 6. That might be two sections of AP CS A and another of CS1, or two sections of AP CS A and 6 students in an on-line class.  In any case, this suggests two high school CS teachers (maybe three) in half of the high schools in the district.  Those teachers aren’t teaching only CS, but with increased demand and support from principals, the CS offerings could grow.

It’s fascinating to wander through the Texas data, to see what’s there and what’s not.  I could be wrong about what’s there, e.g., maybe there’s only one teacher in Edinburg and she’s moving from school-to-school.  Given these data, there’s unlikely to be a CS teacher in every high school, who just isn’t teaching any CS. These data are a great snapshot. There is CS in Texas high schools, and maybe there’s enough there to take root and grow.

 

October 19, 2018 at 7:00 am 2 comments

A high-level report on the state of computing education policy in US states: Access vs Participation

states-policyInteresting analysis from Code.org on the development of policies in US states that promote computing education — see report here, and linked below.  The map above is fascinating in that it shows how much computing education has become an issue in all but five states.

The graph below is the one I found confusing.

urm-access

I’ve been corrected: the first bar says that where the school’s population is 0-25% from under-represented minority groups, 41% of those schools teach CS.  Only 27% of mostly-minority schools (75%-100% URM, in the rightmost column) offer CS.  This is a measure of which schools offer computer science.

The graph above doesn’t mean that there are any under-represented minority students in any CS classes in any of those high schools.  My children’s public high school in Georgia was over 50% URM, but the AP CS class was 90% white and Asian kids.  From the data we’ve seen in Georgia (for example, see this blog post), few high schools offer more than one CS class. Even in a 75% URM high school, it’s pretty easy to find 30 white and Asian guys.  Of course, we know that there are increasing numbers of women and under-represented minority students in computer science classes, but that’s a completely different statistic from what schools offer CS.

I suspect that the actual participation of URM students in CS is markedly lower than the proportion in the school.  In other words, in a high school with 25% URM, I’ll bet that the students in the CS classes are less than 25% URM.  Even in a 75% URM high school, I’ll bet that CS participation is less than 75% URM.

Access ≠ participation.

Source: The United States for Computer Science – Code.org – Medium

October 12, 2018 at 7:00 am 10 comments

ECEP has a new home at The University of Texas at Austin: First meeting this week at CSforAll

I can’t tell you how exciting this press release is for me.  Rick Adrion, Renee Fall, Barbara Ericson, and I started the Expanding Computing Education Pathways Alliance (http://ecepalliance.org) in 2012 to provide states with support as they broadened participation in computing education.  Six years later, we had 16 states and Puerto Rico involved — but we were ready to be done.  We all four had worked on previous alliances (CAITE and Georgia Computes) and felt that the movement needed new leaders.  I am so very pleased that Carol Fletcher and her wonderful team decided to carry on ECEP, and NSF has agreed to continue funding ECEP as it expands to TWENTY-THREE states and US territories!

ECEP (now based out of UT-Austin) will have its first meeting this week, at Wayne State University in Detroit (where Barbara and I first met in 1983) as part of the CSforAll summit.

The National Science Foundation (NSF) has awarded the UT STEM Center a three-year $2.5 million grant to lead the Expanding Computing Education Pathways (ECEP) Alliance. ECEP is one of eight Broadening Participation in Computing Alliances (BPC) funded by the NSF to increase the number and diversity of students in K-16 pathways. ECEP works with state leadership teams to achieve this goal through education policy reform. First launched in 2012 through an NSF grant to Georgia Tech and the University of Massachusetts Amherst, ECEP has since grown through four phases from two states to sixteen and Puerto Rico. Building on the existing network of ECEP states noted in the map above, the ECEP leadership team is pleased to announce the fifth phase addition of six new states to the Alliance: Hawaii, Minnesota, Mississippi, Ohio, Oregon, and Washington.

Source: National Alliance for Expanding Computing Education Pathways has a new home at The University of Texas at Austin

October 8, 2018 at 7:00 am Leave a comment

Closing the gaps is the real challenge in computing education (CIRCL Meet Mark Guzdial)

Meet_Mark_Guzdial_–_CIRCLThe Center for Innovative Research in CyberLearning (CIRCL) did a Perspectives interview with me (thanks, Quinn Burke!) that appears here.

I got to talk about the range of things I’ve done, what I’ve been surprised by and not surprised by, and what I think the big challenges to come in K-12 CS education.

In hindsight, it’s not a surprise that we’re having trouble closing the gaps.  There are increasingly more teachers who can teach CS, and there are governors and the Tech industry pushing for more CS Ed.  But in between, there are principals that don’t buy it, and the classes in the schools are few and tiny.  Most Schools of Education are still not players in promoting CS education. I predict over 85% of kids in Georgia (at least) are not getting a single experience with CS.  The percentage of schools having CS is getting higher, but real experience with CS is low.

As you might imagine, I focus on the need for more research and for reducing inequities. We have made a lot of progress on computing education, and we can make more progress still.


N.B. as Shriram points out in the comments, our claim for FCS1 about “language independent” is really about “multi-lingual.” I’ve asked CIRCL to update the piece, and I’ll try to be more careful about what I claim for FCS1 and SCS1.

 

October 1, 2018 at 8:00 am 11 comments

Preparing students for a research career: Gregory Abowd’s 30 PhD Graduates

Georgia Tech’s School of Interactive Computing did an article on my friend Gregory Abowd and his 30 PhD graduates, many of whom have continued in academia. You can find the article here.

The “Abowd family” is a real thing. The article ends talking about how Gregory and his students and their students get together at conferences. I’ve seen pictures of these events. There’s a strong sense of kinship and support in the group, inspired by Gregory.

Here at the University of Michigan, we have just hired two second-generation members of the Abowd family. Gabriela Marcu (see webpage here) and Nikola Banovic (see webpage here) both earned their PhD’s at CMU, working with former Gregory students Jen Mankoff and Anind Dey (who have now moved to U. Washington).  What’s striking to me about both Gabriela and Nikola is that they started down the path to academic research by doing undergraduate research with other Abowd graduates: Gillian Hayes at Irvine and Khai Troung at Toronto (respectively).

What does it take to support future academic researchers while they are still undergraduates?  Obviously, we don’t want all of our undergraduates to become researchers. But we need some. Academic researchers in computing perform a useful and important role. We particularly want more women getting into computing research, and kudos to Google for awarding fifteen grants to promote more women getting into computing research (see article here). We do not have enough CS academics today (as I described in this blog post), and that’s part of the struggle in dealing with the enrollment boom. So we want more — how do we get them?  What do we do at the undergraduate level to make it more likely that we get graduates like Gabriela and Nikola?

We need to expect that CS undergraduates will have careers other than software developers. We often build our undergraduate programs assuming that all of our graduates will become software developers, or will manage software developers. But you can do a lot with a CS degree. We have to build into our programs the features that will help students succeed in the career that they choose, including becoming academic researchers.

One of my colleagues in the Engineering Education Research program here, Joi Mondisa, researches mentoring. She just gave the first EER Seminar, and talked about the importance of being “treated/advised like family.”  Mentors give their mentees honest and valuable advice as if the mentee were a family member.

I suspect that that’s part of Gregory’s success — that the notion of being in the “Abowd family” is something that the members feel and actively participate in. That’s likely a lesson that we can use in the future. Personal mentoring relationships play a big role in encouraging future researchers.  I don’t know how to build personal “like family” research relationships into an undergraduate program, especially at the enrollment scales we see today. But it’s an important problem to think about, both because we should support a variety of outcomes for our CS undergraduates and because one way of managing the enrollment crisis is to grow more CS faculty.

 

September 28, 2018 at 7:00 am 3 comments

The Backstory on Barbie the Robotics Engineer: What might that change?

Professor Casey Fiesler has a deep relationship with Barbie, that started with a feminist remix of a book.  I blogged about the remix and Casey’s comments on Barbie the Game Designer in this post. Now, Casey has helped develop a new book “Code Camp with Barbie and Friends” and she wrote the introduction. She tells the backstory in this Medium blog post.

In her essay, Casey considers her relationship with Barbie growing up:

I’ve also thought a lot about my own journey through computing, and how I might have been influenced by greater representation of women in tech. I had a lot of Barbies when I was a kid. For me, dolls were a storytelling vehicle, and I constructed elaborate soap operas in which their roles changed constantly. Most of my Barbies dated MC Hammer because my best friend was a boy who wasn’t allowed to have “girl” dolls, and MC was way more interesting than Ken. I also wasn’t too concerned about what the box told me a Barbie was supposed to be; otherwise I’d have had to create stories about models and ballerinas and the occasional zookeeper or nurse. My creativity was never particularly constrained, but I can’t help but think that even just a nudge — a reminder that Barbie could be a computer programmer instead of a ballerina — would have influenced my own storytelling.

I’ve been thinking about how Barbie coding might influence girls’ future interest in Tech careers.  I doubt that Barbie is a “role model” for many girls. Probably few girls want to grow up to be “like Barbie.” What a coding Barbie might do is to change the notion of “what’s acceptable” for girls.

In models of how students make choices in academia (e.g., Eccles’ expectancy-value theory) and how students get started in a field (e.g., Alexander’s Model of Domain Learning), the social context of the decision matters a lot. Students ask themselves “Do I want to do this activity and why?” and use social pressure and acceptance to decide what’s an appropriate class to take.  If there are no visible girls coding, then there is no social pressure. There are no messages that programming is an acceptable behavior.  A coding Barbie starts to change the answer to the question, “Can someone like me do this?”

September 24, 2018 at 7:00 am 2 comments

Older Posts Newer Posts


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 4,325 other followers

Feeds

Recent Posts

Blog Stats

  • 1,575,295 hits
November 2018
M T W T F S S
« Oct    
 1234
567891011
12131415161718
19202122232425
2627282930  

CS Teaching Tips