Posts tagged ‘broadening participation in computing’

In last five years, little progress in increasing the fraction of American CS BS degree recipients who are African Americans

Keith Bowman published a series of blog posts this summer on African American undergraduate degrees in engineering.  In July, he wrote one on computer science – linked here. It’s interesting, careful, and depressing. I’m quoting the conclusion below, but I highly recommend clicking on the link and seeing the whole report. What’s most interesting is the greater context — Bowman is comparing across different engineering programs, so he has a strong and data-driven sense of what’s average and what’s below average.

There has been little progress in increasing the fraction of American CS BS degree recipients who are African Americans. Progress will likely only take place through a concerted effort by industry, professional societies, academia and government to foster change, including stronger efforts in graduate degrees. CS undergraduate programs fare poorly compared to many other engineering disciplines in the context of gender diversity and slightly worse than engineering overall in the fraction of African Americans earning undergraduate degrees. Many of the largest CS programs in the US are strikingly behind the national averages for CS BS degrees earned by African Americans.

 

August 24, 2018 at 7:00 am 5 comments

High school students learning programming do better with block-based languages, and the impact is greatest for female and minority students

I learned about this study months ago, and I was so glad to see it published in ICLS 2018 this last summer.  The paper is “Blocks or Text? How Programming Language Modality Makes a Difference in Assessing Underrepresented Populations” by David Weintrop, Heather Killen, and Baker Franke.  Here’s the abstract:

Broadening participation in computing is a major goal in contemporary computer science education. The emergence of visual, block-based programming environments such as Scratch and Alice have created a new pathway into computing, bringing creativity and playfulness into introductory computing contexts. Building on these successes, national curricular efforts in the United States are starting to incorporate block-based programming into instructional materials alongside, or in place of, conventional text-based programming. To understand if this decision is helping learners from historically underrepresented populations succeed in computing classes, this paper presents an analysis of over 5,000 students answering questions presented in both block-based and text-based modalities. A comparative analysis shows that while all students perform better when questions are presented in the block-based form, female students and students from historically underrepresented minorities saw the largest improvements. This finding suggests the choice of representation can positively affect groups historically marginalized in computing.

Here’s the key idea as I see it. They studied over 5,000 high school students learning programming. They compared students use block-based and text-based programming questions.  Everyone does better with blocks, but the difference is largest for female students and those from under-represented groups.

Here’s the key graph from the paper:

Weintrop-blocks-text-icls18a-sub1402-i7_pdf__page_5_of_8_

So, why wouldn’t we start teaching programming with blocks?  There is an issue that students might think that it’s a “toy” and not authentic — Betsy DiSalvo saw that with her Glitch students. But a study with 5K students suggests that the advantages of blocks swamp the issues of inauthenticity.

The International Conference on the Learning Sciences (ICLS) 2018 Proceedings are available here.

August 20, 2018 at 7:00 am 10 comments

Sepehr Vakil appointed first Associate Director of Equity and Inclusion in STEM Education at U. Texas-Austin

I just met Sepehr at an ECEP planning meeting.  Exciting to meet another CS Ed faculty in an Education school!  He won the Yamashita Prize at Berkeley in 2015 for his STEM activism.

Dr. Vakil’s research revolves around the intersection of equity and the teaching and learning of STEM, particularly in computer science and technology. This focus has led Dr. Vakil to conduct participatory design research projects in several contexts. These efforts include founding and directing the Oakland Science and Mathematics Outreach (OSMO) program—an after school program serving youth of color in the city of Oakland. Dr. Vakil also has experience teaching and conducting research within public schools. During graduate school, he co-taught Introductory Computer Science Courses for 3 years in the Oakland Unified and Berkeley Unified School Districts. As part of a university-research collaboration between UC Berkeley and the Oakland Unified School District, he worked with students and teachers in the Computer Science and Technology Academy at Oakland Technical High School to design an after school racial justice organization named SPOCN (Supporting People of Color Now!) Dr. Vakil’s work at the intersection of equity, STEM, and urban education has also led to publications in prestigious journals such as Cognition & Instruction, Equity and Excellence in Education, and the Journal of the Learning Sciences.

Source: Sepehr Vakil appointed first Associate Director of Equity and Inclusion in STEM Education – Center for STEM Education

March 24, 2017 at 7:00 am Leave a comment

The Role of CS Departments in The US President’s “CS for All” Initiative: Panel from #SIGCSE 2017

There was interest in our slides from the 2017 SIGCSE Panel, “The Role of CS Departments in The US President’s “CS for All” Initiative.”  They are linked above, and summarized below.

In January 2016, US President Barack Obama started an initiative to provide CS for All – with the goal that all school students should have access to computing education. Computing departments in higher education have a particularly important role to play in this initiative. It’s in our best interest to get involved, since the effort can potentially improve the quality of our incoming students. CS Departments have unique insights as subject-matter experts to inform the development of standards. We can provide leadership to inform and influence education policy. In this session, we will present a variety of ways in which departments and faculty can support CS for All and will answer audience questions about the initiative. Our goal is to provide concrete positive actions for faculty.

Barbara Ericson spoke on influencing our incoming students and using outreach to improve the number and diversity of students and to improve the number and quality of teachers.

Rick Adrion spoke on CS faculty providing subject-matter expertise to standards efforts. A key role for CS faculty is to help teachers, administrators, and public policy makers to understand what CS is.

Megean Garvin spoke on how CS faculty can provide a leadership role. Faculty have a particular privileged position to draw together diverse stakeholders to advance CS Education.

March 11, 2017 at 7:00 am Leave a comment

AP Computer Science Demographics Report for 2015 completed #CSEdWeek

Barbara Ericson, with the help of Phil Sands at Purdue, has now finished tabulating the demographic data for AP Computer Science for 2015 — see link here.  We don’t yet have the statistical tests that Kevin Karplus asked for (see post here), but Barbara did list the percentage of Hispanic exam takers with their proportion of the population.

hispanic-exam-takers

Our blog posts on AP CS have been picked up by Audrey Watters in her 2015 Top Ed-Tech Trends summary, in a decidedly negative light.

I’ll look at the whole “learn-to-code” push in an upcoming post, but I will note here: “Nationally, 37,327 students took the AP CS A exam in 2014,” Mark Guzdial observed. “This was a big increase (26.29%) from the 29,555 students who took it in 2013.” “Barbara Ericson’s 2015 AP CS demographics analysis: Still No African-Americans Taking the AP CS Exam in 9 States.” And Code.org teamed up with the College Board: because everyone needs to learn to code and then hand over money to the College Board for an AP test on the subject. Boom.

We don’t analyze AP CS A in order to market for the College Board.  We analyze AP CS A exam demographics because it’s the only operational definition we have found of the state of computing education across the United States.  From our work in “Georgia Computes!” we know that AP CS A tracks closely all other computing education in Georgia.  AP CS A is a dipstick to get a sense for who’s in the high school CS population.

 

December 11, 2015 at 7:10 am 2 comments

Blog Post #1999: The Georgia Tech School of Computing Education #CSEdWeek

Three and a half years, and 1000 blog posts ago, I wrote my 999th blog post about research questions in computing education (see post here). I just recently wrote a blog post offering my students’ take on research questions in computing education (see post here), which serves to update the previous post. In this blog post, I’m going to go more meta.

In my CS Education Research class (see description here), my students read a lot of work by me and my students, some work on EarSketch by Brian Magerko and Jason Freeman, and some by Betsy DiSalvo. There are other researchers doing work related to computing education in the College of Computing at Georgia Tech, notably John Stasko’s work on algorithm visualization, Jim Foley’s work on flipped classrooms (predating MOOCs by several years), and David Joyner and Ashok Goel’s work on knowledge-based AI in flipped and MOOC classrooms, and my students know some of this work. I posed the question to my students:

If you were going to characterize the Georgia Tech school of thought in computing education, how would you describe it?

We talked some about the contrasts. Work at CMU emphasizes cognitive science and cognitive tutoring technologies. Work at the MIT Media Lab is constructionist-based.

GT-School

Below is my interpretation of what I wrote on the board as they called out comments.

  • Contextualization. The Georgia Tech School of Computing education emphasizes learning computing in the context of an application domain or non-CS discipline.
  • Beyond average, white male. We are less interested in supporting the current majority learner in CS.
  • Targeted interventions. Georgia Tech computing education researchers create interventions with particular expectations or hypotheses. We want to attract this kind of learner. We aim to improve learning, or we aim to improve retention. We make public bets before we try something.
  • Broader community. Our goal is to have a broaden participation in computing, to extend the reach of computer science.
  • We are less interested in making good CS students better. To use an analogy, we are not about raising the ceiling. We’re about pushing back the walls and lowering the floors, and sometimes, creating whole new adjacent buildings.
  • We draw on learning sciences theory, which includes cognitive science and educational psychology (e.g., cognitive load theory).
  • We draw on social theories, especially distributed cognition, situated learning, social cognitive theory (e.g., expectancy-value theory, self-efficacy).

I might have spent hours coming up with a list like this, but in ten minutes, my students came up with a good characterization of what constitutes the Georgia Tech School of Thought in Computing Education.

December 7, 2015 at 7:43 am 1 comment

Requirements for a Computing-Literate Society: VL/HCC 2105 Keynote

I gave a keynote talk at VL/HCC 2015 (see the program here) on Tuesday morning.  Here is the abstract, the short form outline, and a link to the slides on SlideShare.net.

Abstract: We share a vision of a society that is able to express problems and ideas computationally. Andrea diSessa called that computational literacy, and he invented the Boxer Programming Environment to explore the media of computational literacy. Education has the job of making citizens literate. Education systems around the world are exploring the question of what should all citizens know about computing and how do we provide that knowledge. The questions being asked are about public policy, but also about what does it mean to be expressive with computation and what should computing users know. The answers to these questions have implications for the future of human-centric computing.

Outline:

I. Our Job: The first computer scientists set the goal to achieve a Computing-Literate Society.

II. Challenges to Achieving a Computing-Literate Society
Access and Diversity
Inverse Lake Wobegon Effect
Unanswered research questions of policymakers

III. Inventing New Kinds of Computing Education
Story #1: Contextualized Computing Education.
Story #2: Understanding the Needs of High School CS Teachers.

VL_HCC_2015_Keynote__Requirements_for_a_Computing_Literate_Society

October 21, 2015 at 8:13 am 4 comments

Older Posts


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 4,352 other followers

Feeds

Recent Posts

Blog Stats

  • 1,587,029 hits
December 2018
M T W T F S S
« Nov    
 12
3456789
10111213141516
17181920212223
24252627282930
31  

CS Teaching Tips