Posts tagged ‘Code.org’

Unpacking models of what the $USD1.3B might achieve in Computing Education: We need long-term vision and will

I wrote my Blog@CACM post for September on the massive investments in CS Education announced last week (see post here): $200M/year from the US Department of Education announced by the White House on Monday, then $300M over five years from the Tech industry announced on Tuesday. I have read analyses saying that the money isn’t really promised or isn’t new (see concerns in this post), and others are shunning the initiative because of White House policies (see link here). I took the promises at face value. My post starts congratulating Hadi Partovi and Cameron Wilson of Code.org and Ivanka Trump who were behind these initiatives, then I offered two back-of-the-envelope models of what $1.3B in five years could do:

  • I extrapolated the New York City model (of a significant computing education experience to every child in every school within grade bands) to the whole of the US, which would likely take more than a magnitude more funding.
  • The funding is enough to pay for a CS teacher in every school, but I argued that it wouldn’t really work. We face a shortage of STEM teachers, and those few are the teachers that we can most likely recruit to CS. CS teacher attrition is so high that we couldn’t keep up with the losses, since we have so few mechanisms of pre-service CS teacher preparation.

I received many responses, queries, and criticisms of that blog post (from email, Facebook, and Twitter).  I am explaining and unpacking the CACM blog post here. I am not going to delete or change the CACM blog post. My mentor, Janet Kolodner, told me once not to dwell on any paper, trying to make it a masterpiece before publishing it. Rather, she suggested that we should just keep publishing. Explore lots of ideas in lots of papers, and publish as a way of thinking with a community. It’s okay to publish something you thought was right, and later find that it’s wrong — it documents the explored trails.

What I learned about the effort in NYC

I said that NYC was aiming to provide a quality computing learning experience for every student in every grade in every school, as I learned last October (and blogged about it here). I learned that the goal is now mandating a computing learning experience in every grade band, so not every year. It’s still a markedly different model than one teacher per school, and doesn’t change the costs considerably.

I learned that (as one might expect) that the effort in NYC is in both the NYC Department of Education and in CSNYC. It’s great that there are many people in the NY DoEd working on CS education! I was told on Twitter that some of what I attributed to CSNYC is actually in NY Department of Education. I don’t know what I mis-attributed, but I’m sure that it’s because I get confounded over “CSNYC” representing “the effort to provide CS education across NYC” and “the organization that exists to provide CS education across NYC.” I don’t understand the split between NYC DoEd and the CSNYC organization, and I’m not going to guess here. I am sure that it’s important for the people involved, but it’s not so important for the model and national analysis.

Explaining my Estimates in Contrast to Code.org’s

Code.org has made their model of the one-time cost of expanding access to K-12 computer science (CS) available at this Google doc. According to their model, it’s clear that the $1.3B is enough to make CS education available in every elementary and secondary school. They have more empirical data than anyone else on putting CS in whole districts, and their data suggest that costs are decreasing as they gain more efficiencies of scale.

Hadi challenged several points in my blog post on Facebook. I won’t replicate all of our exchange, and only include three points here:

  • I argue that we will probably have to pay future CS teachers more in the future, at least as teacher stipends. That prediction is based on trends I see in the states I work with and economics. States are facing teacher shortages, especially in STEM. Aman Yadav shared an article (see link here) that students studying to be teachers fell by 40% from the 2010-2011 academic year to the 2014-2015 academic year. If the supply of teachers is growing more slowly than the rate at which we’re trying to grow CS, we will have to provide incentives to make CS more attractive. Lijun Ni’s dissertation explored the barriers for teachers to become CS teachers (e.g., it’s a lot easier and more pleasant to stay a math teacher). Costs are likely to grow as the labor shortage increases.
  • Some of my costs are too high, e.g., I estimated the cost to develop a high school CS teacher as $10K, where NSF’s studies found it was closer to $8.6K. I used a ballpark 50% of high school CS teacher development for the costs of elementary school CS teacher development.  Since it’s clear that there is enough to prepare one CS teacher per school, I think my numbers are close enough.
  • I believe that extrapolating the NYC model across the country would be even more expensive than it is in NYC. Travel costs in NYC are much less than in rural America. While NYC is very diverse, the rest of the United States is just as diverse. I got to see Ann Leftwich at Indiana University on Saturday. She told me that some of the schools she works with resist teaching science at all! It’s really hard to convince them to teach CS. I expect that there is a similar lack of will to teach CS across the US.

Not all of my estimates are research-based. We don’t have research on everything. Changing all US schools happens so rarely that we do not have good models of how it works. I don’t think that the empirical data of what we have done before in CS Ed is necessarily predictive of what comes next, since most of our experience with CS Ed at-scale is in urban and suburban settings. Getting everywhere is harder. I have observed about “Georgia Computes!” — 1/3 of the high schools in GA got someone that Barbara trained in CS, and that’s likely the easiest 1/3. The next 2/3 will be harder and more expensive.

What I Missed Entirely

As Hadi correctly called me on, the biggest cost factor I missed is the development of curriculum. Back in July, I blogged about Larry Cuban’s analysis that suggested that we need to re-think how we are developing and disseminating CS curriculum in the United States (see link here). We have to develop a lot more curriculum in collaboration with schools, districts, and states nationwide. The US will never adopt a single curriculum nationwide for any subject — it’s not how our system was developed, and it’s why Common Core did not reach all 50 states. The US education system is always about tailoring, adapting, and working with local values and politics. Curriculum is always political.

Mike Zamansky just posted a blog post critiquing some of the curriculum he’s seeing in NYC (see post here). I don’t agree with Mike’s post, but I wholeheartedly agree with his posting. We should argue about curriculum, negotiate what’s best for our students, and create curriculum that works for local contexts.  There is going to be a lot of that nationwide as we take steps towards providing computing education to all students. The iteration and revision will be expensive, but it’s a necessary expense for sustainable, longterm computing education.

What should we do with the money

At a talk I gave at Indiana University on Friday, Katie Siek asked me my opinion. What do I want to see the funding be used for?

It would be great if some of that funding could start more pre-service CS teacher preparation programs. I have argued that we should fund chairs of CS Education in top Schools of Education (see post here). Germany uses this model — they create CS Education professors who will be there for a career, producing CS teachers, supporting local communities of CS teachers, and serving as national models. An endowed chair is $1-3M at most universities. That is not very expensive for a longterm impact.

I prefer an NYC-like model of reaching every student to the model of a teacher for every school. The data I’ve seen from our ECEP states suggests that most CS teachers teach only a single computing class, and that class is typically mostly white/Asian and male. One CS  teacher per school doesn’t reach all the female and under-represented minority students. Equity has to be a top priority in our choices for these funds, since CS education is so inequitable.

My greatest wish is for computational literacy to be woven into other disciplines, especially across all of STEM. I devoted my career to computing education because I believe in the vision of Seymour Papert, Cynthia Solomon, Alan Kay, and Andrea diSessa. Computational literacy can improve learning in science, mathematics, art, language, and other disciplines, too.

I don’t argue that computer science is more important than other STEM subjects. Rather, computing makes learning in all the other STEM subjects better.

I want us to teach real computational literacy across subjects, not just in the CS class hidden away, and not just in an annual experience. I recognize that that’s a long-term, expensive vision — probably two orders of magnitude beyond the current initiative. We need more long-term thinking in CS education, like building up the CS teacher development infrastructure and making the case to people nationwide for CS education. We are not going to solve CS for All quickly.

When the K-12 CS Framework effort launched back in 2015, I told the story here about a conversation I had with Mike Lach (see post here). He pointed out that the last time we changed all US schools, it was in response to the Civil Rights movement. That’s when we started celebrating MLK Jr Day and added African-American History month. He asked me to think about how much national will it took to make those changes happen. We don’t have that kind of national will in CS education in this country — yet. We have a lot more groundwork to do before we can reach CS education for all students or all schools, and funding alone is not going to get us there.

October 4, 2017 at 7:00 am 7 comments

White House announces $200 million a year for computer science – Code.org #CSforAll

Looking forward to hearing more details at Code.org’s webinar this afternoon.  Hadi Partovi posted on Facebook that the money will be provided as competitive grants to schools and non-profits through the Department of Education.  Hadi has written a personal blog post about his motivations in supporting this announcement.

The White House memorandum on the announcement is here. I don’t understand all the details here, and the details of the funding are important.  If it’s not new funding, then it puts CS in competition with other fields, e.g., if the money is set aside for CS when it was originally allocated for all of STEM.  The White House memorandum says, “Establish promotion of high-quality STEM education, with a particular focus on Computer Science, as a Department of Education priority.” If it’s a preference (e.g., a school gets money if and only if they’re teaching CS), it may hurt schools that can’t afford to teach CS yet because they’re stretched thin teaching literacy and mathematics.

Here’s the webinar information: (9/26) at 11am PT, 2pm ET
By web: https://code.zoom.us/j/783490509
By phone: US: +1 646 558 8656 or +1 669 900 6833
Webinar ID: 783 490 509

Today, the White House announced a $200 million per year commitment to computer science education in America’s schools. Unlike similar proposals in previous years, today’s action delivers funding to schools, immediately. Besides expanding access to computer science in schools that previously didn’t teach it, the funds promise to increase participation by women and underrepresented minorities.This funding will jumpstart efforts to ensure every student in every school has the opportunity to learn computer science as part of a well-rounded education. For advocates of increased access and diversity in CS, this is the culmination of years of momentum that began in classrooms, spread to entire school districts, and won the support of business leaders and elected officials globally.

Source: $200 million a year for computer science – Code.org – Medium

September 26, 2017 at 7:00 am Leave a comment

A Weak Argument that Silicon Valley is Pushing Coding Into American Classrooms through Code.org

When the New York Times does an article on Code.org, it’s worth noting.  I had my class on Computing and Society read the essay and critique it, and they were dubious.  They have a bias — they’re all Georgia Tech students in STEM, and almost all majoring in Computer Science.  They tend to think learning to code is a good thing.  Still, they were concerned about the article, with good reason.  They wondered, “Where exactly is Code.org doing something wrong?”

I had similar concerns. I read the quote from Jane Margolis (“It gets very problematic when industry is deciding the content and direction of public education”) and thought, “Jane didn’t just say that.  She would have explained what she meant by ‘problematic.'”  It felt to me like the quote was taken out of context.

Is Code.org really “deciding” what goes into public education?  Or are they simply influencing those who do decide?  Maybe Silicon Valley is having undue influence. This article didn’t really make the case.

Code.org’s multilevel influence machine also raises the question of whether Silicon Valley is swaying public schools to serve its own interests — in this case, its need for software engineers — with little scrutiny. “If I were a state legislator, I would certainly be wondering about motives,” said Sarah Reckhow, an assistant professor of political science at Michigan State University. “You want to see public investment in a skill set that is the skill set you need for your business?”Mr. Partovi, 44, said he simply wanted to give students the opportunity to develop the same skills that helped him and his backers succeed. He immigrated as a child to the United States from Iran with his family, went on to study computer science at Harvard, and later sold a voice-recognition start-up he had co-founded to Microsoft for a reported $800 million.

“That dream is much less accessible if you are in one of America’s schools where they don’t even tell you you could go into that field,” Mr. Partovi said.

Even so, he acknowledged some industry self-interest. “If you are running a tech company,” he said, “it’s extremely hard to hire and retain engineers.”

July 28, 2017 at 7:00 am 5 comments

Why are underrepresented minorities and poor over-represented in Code.org courses?

Code.org has a blog post describing their latest demographics results showing that they have remarkably high percentages of women (45%) and under-represented minorities (48%). In fact, their students are 49% on free and reduced meals.

Only 38% of students in the US are on free and reduced lunch.  44% of students in the US are Black or Hispanic (using US Department of Education data).

What does it mean that Code.org classes are over-sampling under-represented groups and poorer students?

I don’t know. Certainly, it’s because Code.org targeted large, urban school districts.  That’s who’s there.  But it’s not like the classes are unavailable to anyone else.  If the perception was these are valuable, shouldn’t more suburban schools be wanting them, too?

One explanation I can imagine is that schools that are majority poor and/or minority might be under-funded, so Code.org classes with their well-defined curriculum and clear teacher preparation models are very attractive. Those schools may not have the option of hiring (say) an AP CS teacher who might pick from one of the non-Code.org curriculum options, or even develop his or her own.

The key question for me is: Why aren’t the more majority and wealthier schools using Code.org classes?  CS is a new-to-schools, mostly-elective subject.  Usually those new opportunities get to the wealthy kids first.  Unless they don’t want it. Maybe the wealthy schools are dismissing these opportunities?

It’s possible that Code.org classes (and maybe CS in high school more generally) might get end up stigmatized as being for the poor and minority kids?  Perhaps the majority kids or the middle/upper-class kids and schools avoid those classes? We have had computing classes in Georgia that were considered “so easy” that administrators would fill the classes with problem students — college-bound students would avoid those classes.  We want CS for all.

Code.org has achieved something wonderful in getting so many diverse students into computing classes. The questions I’m raising are not meant as any criticism of Code.org.  Rather, I’m asking how the public at large is thinking about CS, and I’m using Code.org classes as an exemplar since we have data on them.  Perceptions matter, and I’m raising questions about the perceptions of CS classes in K-12.

I do have a complaint with the claim in the post quoted below.  The citation is to the College Board’s 2007 study which found that AP CS students are more likely to major in CS than most other AP’s, with a differentially strong impact for female and under-represented minority students.  “Taking AP CS” is not the same as “learn computer science in K-12 classrooms.”  That’s too broad a claim — not all K-12 CS is likely to have the same result.

Today, we’re happy to announce that our annual survey results are in. And, for the second year in a row, underrepresented minorities make up 48% of students in our courses and females once again make up 45% of our students…When females learn computer science in K-12 classrooms, they’re ten times more likely to major in it in college. Underrepresented minorities are seven to eight times more likely.

Source: Girls and underrepresented minorities are represented in Code.org courses

July 21, 2017 at 8:00 am 11 comments

University CS graduation surpasses its 2003 peak, with poor diversity

Code.org just blogged that we have set a record in the number of BS in CS graduates.

University CS graduates have set a new record, finally surpassing the number of degrees earned 14 years ago.With a 15% increase in computer science graduates (49,291 bachelor’s degrees), 2015 had the largest number of CS graduates EVER! The previous high point was over a decade ago, in 2003.

Source: University computer science finally surpasses its 2003 peak!

But look at the female numbers there — they are less than what they were in 2003.  We are graduating 2/3 as many women today as in 2003.  (Thanks to Bobby Schnabel for pointing this out.) We have lost ground.

My most recent Blog@CACM is on the new CRA “Generation CS” report, and about the impacts the rise in enrollment are having on diversity.  One of the positive messages in this report is that departments that have worked to improve their diversity have been successful.  As a national statistic, this doesn’t feel like a celebration when CS is becoming less diverse in just 12 years.

 

April 10, 2017 at 7:00 am 4 comments

Does pre-service CS education reduce the costs and make more effective in-service PD? Paths to #CS4All

What we’re trying to achieve in CS education in the United States is rarely done (successfully) and hasn’t been done in several decades (see previous post on this).  We’re changing the education canon, what everyone is taught in schools.  It’s a huge effort, involving standards and frameworks, convincing principals and legislators, and developing teachers and curricula.

Right now, we’re mostly developing the teachers we need with in-service education — which is expensive.  We’re shipping around trainers, people providing professional development to existing teachers.  We’re paying travel costs (sometimes) to teachers, and stipends (sometimes) for their time.

I have argued previously that we have to move to a pre-service model, where new teachers are prepared to be CS teachers from undergraduate education.  It’s the only way to have a sustainable flow of CS teachers into the education system.  NYC is working on developing per-service programs now, because it’s a necessity for their CS education mandate.  No reform takes root in US schools without being in schools of education.

At a meeting of the Georgia CS Task Force, where talking about the high costs of in-service CS teacher education, we started wondering if the costs might be cheaper in the long-run by growing pre-service education, rather than scaling in-service.  Of course, we have to build a critical mass cohort of in-service teachers (e.g., to provide mentors for student teachers) — in many states, we’ve already done that.

Creating pre-service programs at state universities creates opportunities for in-service education that are cheaper and maybe more effective than what we’re creating today. Pre-service programs would require CS Education faculty (and likely, graduate students) at state universities.  These people are then resources.

  • First, those faculty are now offering pre-service PD, which is necessary for sustainability.
  • Regional high school and elementary school teachers could then go to the local university for in-service programs — which can be run more cheaply at the university, than at a downtown hotel or conference center with presenters shipped in from elsewhere.
  • The CS Ed faculty are there as a resource for regional high school teachers for follow-up, and the follow-up is a critical part of actually instituting new curricula.
  • Many education schools offer resources (e.g., curriculum libraries, help with teacher questions) that would be useful to CS teachers and are available locally with people who can answer questions.

Pre-service programs require more up-front costs (e.g., paying for faculty, setting up programs).  But those costs likely amortize over the lifetime of the faculty and the program.  Each individual professional development session offered by local faculty (either pre-service or in-service) is cheaper than each in-service  session created by non-local presenters/developers.  Over many years, it is likely cheaper to pay the higher up-front costs for pre-service than the long, expensive burn of in-service.

I don’t know how to figure out the cost trade-off, but it might be worthwhile for providers like Code.org and PLTW to play out the scenarios.

July 20, 2016 at 7:54 am 4 comments

Top business leaders, 27 governors, urge Congress to boost computer science education – The Washington Post

I saw on Facebook that Hadi Partovi was at Congress.  Now I see why — there’s an effort underway to get Congress to fund more in CS education.  I’m wondering what they want to get funded.  Incentives for teachers? Professional development? Pre-service education?  Does someone know the details?

Despite this groundswell, three-quarters of U.S. schools do not offer meaningful computer science courses. At a time when every industry in every state is impacted by advances in computer technology, our schools should give all students the opportunity to understand how this technology works, to learn how to be creators, coders, and makers — not just consumers. Instead, what is increasingly a basic skill is only available to the lucky few, leaving most students behind, particularly students of color and girls.

How is this acceptable? America leads the world in technology. We invented the personal computer, the Internet, e-commerce, social networking, and the smartphone. This is our chance to position the next generation to participate in the new American Dream.

Source: Top business leaders, 27 governors, urge Congress to boost computer science education – The Washington Post

April 26, 2016 at 8:51 am Leave a comment

Older Posts


Recent Posts

December 2017
M T W T F S S
« Nov    
 123
45678910
11121314151617
18192021222324
25262728293031

Feeds

Blog Stats

  • 1,460,181 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 5,193 other followers

CS Teaching Tips