Posts tagged ‘computing education’

Public Review Period for K-12 CS CSTA Standards Now Open

Note that this is not the framework — standards are the curriculum specifications which can be based on a framework.  These are designed to align the K-12 CS Framework.

Go to the page linked below to find the links which will lead you to the standards specific to various grade levels.

The public review period for the revised K-12 Computer Science (CS) Standards is now open! In revising the K-12 CS Standards toward a more final form, the taskforce took specific steps to closely align its work with that of the K-12 CS Framework.  This alignment will strengthen the value of both resources as tools to communicate the CS concepts and practices critical to student educational experiences today. The Computer Science Teachers Association invites teachers, curriculum supervisors, administrators, business leaders, the broad education and business communities to review the standards and offer feedback. The public review process is now open and ends Wednesday, February 15 at 11:59 PM PST.

Source: Public Review Period for K-12 CS Standards Now Open! – CSTA

February 3, 2017 at 7:00 am 1 comment

California developing Computer Science Standards

California is now starting a process of developing computer science standards for K-12, explicitly using the new K-12 CS Framework.  California is huge and has a huge influence on the rest of the country’s education policy and practice.  This will likely be one of the most important outcomes of the K-12 CS Framework process.

Computer Science Content Standards Development

The CDE, Instructional Quality Commission, and State Board of Education (SBE) are commencing the process for developing new California computer science content standards. Per California Education Code. Section 60605.4, “on or before July 31, 2019, the Instructional Quality Commission shall consider developing and recommending to the SBE computer science content standards for kindergarten and grades 1 to 12, inclusive, pursuant to recommendations developed by a group of computer science experts.” Information and updates concerning the development of computer science content standards for California public schools will be posted here.

Source: Computer Science Education – Content Standards (CA Dept of Education)

January 13, 2017 at 7:00 am Leave a comment

Does Your Teaching Encourage Epistemological Pluralism?

Turkle and Papert’s paper on epistemological pluralisms is one of my favorite by Seymour (which I talked about here).  This is the first paper I’ve read about how to encourage them.

I remember a math teacher I once had. He would ask students to go up to the board and explain how they solved the problem. But he wouldn’t stop there. He would then ask if someone else had a different way of solving the problem and allow the different approaches to be shared with the class. This validated that there were multiple ways a problem can be solved, and that it was not enough to know just one way… It also meant no one remained in doubt about whether their (different) approach was “incorrect” (there was room to clear up misconceptions, for example). It’s not as deep as epistemology, but it’s a start. A start to plurality of the “how”, but we should consider maybe also the plurality of the “what” and “why” (because which questions we choose to pursue for learning and why they matter to us are deep ontological and epistemological questions).

Source: Does Your Teaching Encourage Epistemological Pluralism? – ProfHacker – Blogs – The Chronicle of Higher Education

November 18, 2016 at 7:29 am Leave a comment

Growing Computer Science Education Into a STEM Education Discipline: November CACM

I manage the education column in CACM’s Viewpoints section, and this quarter, Briana Morrison and I wrote the piece.  While CS is now officially “in STEM,” it’s not like mathematics and science classes.  In the November issue, we look at what has to happen to make CS as available as mathematics or science education. ( BTW, Briana defends her dissertation today!)

Computing education is changing. At this year’s CRA Snowbird Conference, there was a plenary talk and three breakout sessions dedicated to CS education and enrollments. In one of the breakout sessions, Tracy Camp showed that much of the growth in CS classes is coming from non-CS majors, who have different goals and needs for computing education than CS majors.a U.S. President Obama in January 2016 announced the CS for All initiative with a goal of making computing education available to all students.

Last year, the U.S. Congress passed the STEM Education Act of 2015, which officially made computer science part of STEM (science, technology, engineering, and mathematics). The federal government offers incentives to grow participation in STEM, such as scholarships to STEM students and to prepare STEM teachers. Declaring CS part of STEM is an important step toward making computing education as available as mathematics or science education.

The declaration is just a first step. Mathematics and science classes are common in schools today. Growing computing education so it is just as common requires recognition that education in computer science is different in important ways from education in STEM. We have to learn to manage those differences.

Source: Growing Computer Science Education Into a STEM Education Discipline | November 2016 | Communications of the ACM

November 7, 2016 at 7:20 am 3 comments

How can teachers help struggling computationalists

My Blog@CACM post for this month is about imagining the remedial teaching techniques of a school-based “Computing Lab” in the near future.

It’s becoming obvious that computing is a necessary skill for 21st Century professionals. Expressing ideas in program code, and being able to read others’ program code, is a kind of literacy. Even if not all universities are including programming as part of their general education requirements yet, our burgeoning enrollments suggest that the students see the value of computational literacy.

We also know that some students will struggle with computing classes. We do not yet have evidence of challenges in learning computation akin to dyslexia. Our research evidence so far suggests that all students are capable of learning computing, but differences in background and preparation will lead to different learning challenges.

One day, we may have “Computing Labs” where students will receive extra help on learning critical computational literacy skills. What would happen in a remedial “Computing Lab”? It’s an interesting thought experiment.

Source: Designing the Activities for a “Computing Lab” to Support Computational Literacy | blog@CACM | Communications of the ACM

I list several techniques in the article, and I’m sure that we can come up with many more.  Here’s one more each DO and DON’T for “Computer Lab” for struggling computationalists.

  • DO use languages other than industry standard languages.  As I’ve mentioned before in this blog, CS educators are far too swayed by industry fads.  I’m a big fan of Livecode, a cross-platform modern form of HyperCard. An ICER 2016 paper by Raina Mason, Simon et al. estimated Livecode to have the lowest cognitive load of several IDE’s in use by students.  If we want to help students struggling to learn computing, we have to be willing to change our tools.
  • DON’T rely on program visualizations.  The evidence that I’ve seen suggests that program visualizations can help high-ability students, and well-designed program visualizations can even help average students.  I don’t see evidence that program visualizations can help the remedial student.  Sketching and gesture are more effective for teaching and learning in STEM than diagrams and visualizations.  Sketching and gesture encourage students to develop improved spatial thinking.  Diagrams and visualizations are likely to lead remedial students into more misconceptions.

 

October 21, 2016 at 7:51 am 9 comments

K-12 CS Framework: Best we can expect. Maybe as good as we need.

The CS K-12 Framework was released Monday.  This has been an 11 month long process — see first blog post about the frameworkfirst blog post on the process, and the post after my last meeting with the writers as an advisor.  The whole framework can be found here and a video about the framework can be found here:

A webinar about the Framework will be held on Wednesday, October 19, at 12 PM Pacific / 3 PM Eastern. Visit https://www.youtube.com/watch?v=wmxyZ1DFBwk for more details and to watch the webinar on the 19th.

I believe that this framework is about as good as we can expect right now.  Pat Yongpradit did an amazing job engaging a broad range of voices in a short time.  The short time frame was forced on the process by the state policymakers who wanted a framework, something on which they could hang their state standards and curricula.  The NGSS veterans did warn us what could happen if we got it wrong, if we went too fast.  Maybe the framework process didn’t go too fast.

The framework document is impressive — comprehensive, carefully constructed, with a rich set of citations.  It’s teacher-centric, which may not be the best for a document to inform state standards, but that’s the constituency with the strongest voice in CS Ed today.  There are too few CS Ed informed policymakers or district administrators to push back on things that might not work work. The CS Ed researchers are too few and too uncertain to have a strong voice in the process.  Computer scientists (both professional and academic) generally ignored the process. The CS teachers had the greatest political influence.

I predicted in January that this would be a “safe list,” a “subset of CS that most people can agree to.”  I was wrong. There’s a lot in there that I don’t see as being about computation.  Like “Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness” — that’s a high school computing recommendation?  Like “Include the unique perspectives of others and reflect on one’s own perspectives when designing and developing computational products” — you can achieve that in high school?

Those “aspirational” statements (Pat’s word) mean that the writers went beyond defining a consensus document.  They tried to push future CS education in the ways that they felt were important.  Time will tell if they got it right.  The framework fails if schools (especially under-resourced schools) decide that it’s too hard and give up, meaning that underprivileged kids will continue to get no CS education.  If teachers and administrators work harder to provide more and better CS education because of this document, then the framework writers win.

This is an important document that will have a large influence.  Literally, millions of schoolchildren in several states are going to have their CS education defined by this document.

Typing that statement gives me such a sinking feeling because we just don’t have the research evidence to support what’s in the framework.

When I went to meetings, I too often heard, “Of course, teachers and students can do this, because it works in my program.”  So few computing education programs (e.g., packages of curriculum, professional development, assessment, and all the things teachers need like pacing guides and standards crosswalks) have scaled yet in diverse populations.  Maybe it works in your program.  But will it work when it’s not your program anymore?  When it’s a national program? When states and districts take it over and make it their own?  Will it still work?

And we want schools and districts to make things their own.  That’s at the heart of the American educational system — we’re distributed and diverse, with thousands of experiments going on at once.  I worry about how little knowledge about computing and computing education is out there, as guidance when schools and districts make it their own.

So, yeah, I’m one of those uncertain researchers, mumbling in the corner of this process, worrying, “This could go so wrong.”  Maybe it won’t.  Maybe this will be the first step towards providing a computing education for everyone.

The die is cast. Let’s see what happens.

 

October 18, 2016 at 7:01 am 19 comments

Older Posts Newer Posts


Recent Posts

April 2017
M T W T F S S
« Mar    
 12
3456789
10111213141516
17181920212223
24252627282930

Feeds

Blog Stats

  • 1,378,138 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 4,653 other followers

CS Teaching Tips