Posts tagged ‘#CS4All’

Are you talking to me? Interaction between teachers and researchers around evidence, truth, theory, and decision-making

In this blog, I’m talking about computing education research, but I’m not always sure and certainly not always clear about who I’m talking to. That’s a problem, but it’s not just my problem. It’s a general problem of research, and a particular problem of education research. What should we say when we’re talking to researchers, and what should we say when we’re talking to teachers, and where do we need to insert caveats or explain assumptions that may not be obvious to each audience?

From what I know of philosophy of science, I’m a post-positivist. I believe that there is an objective reality, and the best tools that we humans have to understand it are empirical evidence and the scientific method. Observations and experiments have errors and flaws, and our perspectives are biased. All theory should be questioned and may be revised. But that’s not how everyone sees the world, and what I might say in my blog may be perceived as a statement of truth, when the strongest statement I might make is a statement of evidence-supported theory.

It’s hard to bridge the gap between researchers and education. Lauren Margulieux shared on Twitter a recent Educational Researcher article that addresses the issue. It’s not about getting teachers access to journal articles, because those articles aren’t written to speak to nor address teachers’ concerns. There have to be efforts from both directions, to help teachers to grok researchers and researchers to speak to teachers.

I have three examples to concretize the problem.

Recursion and Iteration

I wrote a blog post earlier this month where I stated that iteration should be taught before recursion if one is trying to teach both. For me, this is a well-supported statement of theory. I have written about the work by Anderson and Wiedenbeck supporting this argument. I have also written about the terrific work by Pirolli exploring different ways to teach recursion, which fed into the work by Anderson.

In the discussion on the earlier post, Shriram correctly pointed out that there are more modern ways to teach recursion, which might make it better to teach before iteration. Other respondents to that post point out the newer forms of iteration which are much simpler. Anderson and Wiedenbeck’s work was in the 1980’s. That sounds great — I would hope that we can do better than what we did 30 years ago. I do not know of studies that show that the new ways work better or differently than the ways of the 1980’s, and I would love to see them.

By default, I do not assume that more modern ways are necessarily better. Lots of scientists do explore new directions that turn out to be cul-de-sacs in light of later evidence (e.g., there was a lot of research in learning styles before the weight of evidence suggested that they didn’t exist). I certainly hope and believe that we are coming up with better ways to teach and better theories to explain what’s going on. I have every reason to expect that the modern ways of teaching recursion are better, and that the FOR EACH loop in Python and Java works differently than the iteration forms that Anderson and Wiedenbeck studied.

The problem for me is how to talk about it.  I wrote that earlier blog post thinking about teachers.  If I’m talking to teachers, should I put in all these caveats and talk about the possibilities that haven’t yet been tested with evidence? Teachers aren’t researchers. In order to do their jobs, they don’t need to know the research methods and the probabilistic state of the evidence base. They want to know the best practices as supported by the evidence and theory. The best evidence-based recommendation I know is to teach iteration before recursion.

But had I thought about the fact that other researchers would be reading the blog, I would have inserted some caveats.  I mean to always be implicitly saying to the researchers, “I’m open to being proven wrong about this,” but maybe I need to be more explicit about making statements about falsifiability. Certainly, my statement would have been a bit less forceful about iteration before recursion if I’d thought about a broader audience.

Making Predictions before Live Coding

I’m not consistent about how much evidence I require before I make a recommendation. For a while now, I have been using predictions before live coding demonstrations in my classes. It’s based on some strong evidence from Eric Mazur that I wrote about in 2011 (see blog post here). I recommend the practice often in my keynotes (see the video of me talking about predictions at EPFL from March 2018).

I really don’t have strong evidence that this practice works in CS classes. It should be a pretty simple experiment to test the theory that predictions before seeing program execution demonstrations helps with learning.

  • Have a set of programs that you want students to learn from.
  • The control group sees the program, then sees the execution.
  • The experimental group sees the program, writes down a prediction about what the execution will be, then sees the execution.
  • Afterwards, ask both groups about the programs and their execution.

I don’t know that anybody has done this experiment. We know that predictions work well in physics education, but we know that lots of things from physics education do not work in CS education. (See Briana Morrison’s dissertation.)

Teachers have to do lots of things for which we have no evidence. We don’t have enough research in CS Ed to guide all of our teaching practice. Robert Glaser once defined education as “Psychology Engineering,” and like all engineers, teachers have to do things for which we don’t have enough science. We make our best guess and take action.

So, I’m recommending a practice for which I don’t have evidence in CS education. Sometimes when I give the talk on prediction, I point out that we don’t have evidence from CS. But not always. I probably should. Maybe it’s enough that we have good evidence from physics, and I don’t have to get into the subtle differences between PER and CER for teachers. Researchers should know that this is yet another example of a great question to be addressed. But there are too few Computing Education Researchers, and none that I know are bored and looking for new experiments to run. and UTeach CSP

Another example of the complexity of talking to teachers about research is reflected in a series of blog posts (and other social media) that came out at the end of last year about the AP CS Principles results.

  • UTeach wrote a blog post in September about the excellent results that their students had on the AP CSP exam (see post here). They pointed out that their pass rate (83%) was much higher than the national average of 74%, and that advantage in pass rates was still there when the data were disaggregated by gender or ethnicity.
  • There followed a lot of discussion (in blog posts, on Facebook, and via email) about what those results said about the UTeach curriculum. Should schools adopt the UTeach CSP curriculum based on these results?
  • Hadi Partovi of responded with a blog post in October (see post here). He argued that exam scores were not a good basis for making curriculum decisions.’s pass rates were lower than UTeach’s (see their blog post on their scores), and that could likely be explained by’s focus on under-represented and low-SES student groups who might not perform as well on the AP CSP for a variety of reasons.
  • Michael Marder of UTeach responded with two blog posts. One conducted an analysis suggesting that UTeach’s teacher professional development, support, and curriculum explained their difference from the national average (see post here), i.e., it wasn’t due to what students were served by UTeach. A second post tried to respond to Hadi directly to show that UTeach did particularly well with underrepresented groups (see post here).

I don’t see that anybody’s wrong here. We should be concerned that teachers and other education decision-makers may misinterpret the research results to say more than they do.

  • The first result from UTeach says “UTeach’s CSP is very good.” More colloquially, UTeach doesn’t suck. There is snake oil out there. There are teaching methods that don’t actually work well for anyone (e.g., we could talk some more about learning styles) or only work for the most privileged students (e.g., lectures without active learning supports). How do you show that your curriculum (and PD and support) is providing value, across students in different demographic groups? Comparing to the national average (and disaggregated averages) is a reasonable way to do it.
  • There are no results saying that UTeach is better than for anyone, or vice-versa. I know of no studies comparing any of the CSP curricula. I know of no data that would allow us to make these comparisons. They’re hard to do in a way that’s convincing. You’d want to have a bunch of CSP students and randomly assign them to either UTeach and, trying to make sure that all relevant variables (like percent of women and underrepresented groups) is the same in each. There are likely not enough students taking CSP yet to be able to do these studies.
  • likely did well for their underrepresented students, and so did UTeach. It’s impossible to tell which did better. Marder is arguing that UTeach did well with underrepresented groups, and UTeach’s success was due to their interventions, not due to the students who took the test.  I believe that UTeach did well with underrepresented groups. Marder is using statistics on the existing data collected about their participants to make the argument about the intervention. He didn’t run any experiments. I don’t doubt his stats, but I’m not compelled either. In general, though, I’m not worried about that level of detail in the argument.

All of that said, teachers, principals, and school administrators have to make decisions. They’re engineers in the field. They don’t have enough science. They may use data like pass rates to make choices about which curricula to use. From my perspective, without a horse in the race or a dog in the fight, it’s not something I’m worried about. I’m much more concerned about the decision whether to offer CSP at all. I want schools to offer CS, and I want them to offer high-quality CS. Both UTeach and offer high-quality CS, so that choice isn’t really a problem. I worry about schools that choose to offer no CSP or no CS at all.

Researchers and teachers are solving different problems. There should be better communication. Researchers have to make explicit the things that teachers might be confused about, but they might not realize what the teachers are confused about. In computing education research and other interdisciplinary fields, researchers may have to explain to each other what assumptions they’re making, because their assumptions are different in different fields. Teachers may use research to make decisions because they have to make decisions. It’s better for them to use evidence than not to use evidence, but there’s a danger in using evidence to make invalid arguments — to say that the evidence implies more than it does.

I don’t have a solution to offer here. I can point out the problem and use my blog to explore the boundary.

June 15, 2018 at 1:00 am 4 comments

Some principals are getting interested in CS, but think pressure for CS is mostly coming from Tech companies

How do high school principals in small, medium and large districts view the Computer Science for All movement?


High school leaders in smaller districts are most enthusiastic about the trend, a new survey by the Education Week Research Center found. Overall, 30% of all principals say CS is not “on their radar,” and 32% say CS is an “occasional supplement or enrichment opportunity.”  I found the two graphs above interesting.  The majority of principals aren’t particularly excited by CS, and most principals think that it’s the Tech firms that are pushing CS onto schools, not parents.

Source: Principals Warm Up to Computer Science, Despite Obstacles

May 28, 2018 at 7:00 am 3 comments

The pushback begins: Who benefits from the push to teach every kid to code?

The pushback was inevitable.  Slate published a piece in December, “Who Benefits From the Push to Teach Every Kid to Code?” The article provides an answer in the subtitle, “Tech companies, for one.”

The article is more history lesson than explicit argument that the driver behind the current effort to promote computing is simply for Tech companies to bolster their bottom line.  It’s still an interesting piece and worth reading.

For some tech companies, this is an explicit goal. In 2016, Oracle and Micron Technology helped write a state education bill in Idaho that read, “It is essential that efforts to increase computer science instruction, kindergarten through career, be driven by the needs of industry and be developed in partnership with industry.” While two lawmakers objected to the corporate influence on the bill, it passed with an overwhelming majority.

Some critics argue that the goal of the coding push is to massively increase the number of programmers on the market, depressing wages and bolstering tech companies’ profit margins. Though there is no concrete evidence to support this claim, the fact remains that only half of college students who majored in science, technology, engineering, or math-related subjects get jobs in their field after graduation. That certainly casts doubt on the idea that there is a “skills gap“ between workers’ abilities and employers’ needs. Concerns about these disparities have helped justify investment in tech education over the past 20 years.

January 26, 2018 at 7:00 am 6 comments

Why should we teach programming (Hint: It’s not to learn problem-solving)

This is a revision of the original post. Several readers pointed out on Twitter that my original post was insensitive. It read like an attack on Brenda, a woman of color, from a senior white guy (me). That was not my intent, and I apologize for that. I am grateful to Joseph P. Wilson who helped me understand how to avoid that impression. I can’t change the post that went out yesterday, but I will be more careful in future blog posts.

At the CS for All Consortium Celebration Tuesday, Brenda Wilkerson gave the closing keynote. The full livestream of the CS for All Summit is available here, and it includes Brenda’s talk. I’m a huge fan of Brenda, and she’s done fabulous work in Chicago. She is a leader in bringing CS to All.

I have not seen Brenda’s talk or any of the livestream. My experience of the Consortium Celebration was through reading the Twitter stream as I found time during the day. Brenda had one slide (which you can see in the tweet linked here) that I disagreed with, and because it’s an important point, I’m going to respond to it here.

It says, “Computer science builds the mental discipline for breaking down problems, and solving them.” There are few studies that test this claim as “computer science,” but there have been lots of studies looking for transfer from teaching programming to general problem-solving skills. Probably the first study investigating this claim is Roy Pea and Midian Kurland’s paper On the cognitive effects of learning computer programming. You can find this claim in a paper by Henry Walker to which I responded in this blog. You can see it in posts all over the Internet, from this blog post to this article from a teacher in England. There is a strong belief out there that learning computer science, and programming called out specifically, leads to new problem-solving and “a new way to think.”

There is simply not evidence in support of these claims. I talk about these in my book, I reference the Palumbo meta-review in this blog post, and NYTimes wrote about it this last spring. Like “learning styles” and “Latin teaches thinking,” this is a persistent myth that learning computing leads to problem-solving skills, and we have no support the claim.

I tweeted in response to Brenda’s slide, and several CS teachers asked me, “So why teach programming or computing at all?”  That’s a great question!  Here are some of my top reasons:

  1. To understand our world. The argument that Simon Peyton Jones made in England for their computer science curriculum is that Computer Science is a science like all the others. We teach Chemistry to students because they live in a world with chemical interactions. We teach Biology because they live in a world full of living things. We teach Physics because they live in a physical world. We should teach Computer Science because they live in a digital world.
  2. To study and understand processes. Alan Perlis (first ACM Turing Award laureate) argued in 1961 that everyone on every campus should learn to program. He said that computer science is the study of process, and many disciplines need people to know about process, from managers who work on logistics, to scientists who try to understand molecular or biological processes. Programming automates process, which creates opportunities to simulate, model, and test theories about processes at scale. Perlis was prescient in predicting computational science and engineering.
  3. To be able to ask questions about the influences on their lives. C.P. Snow also argued for everyone to learn computing in 1961, but with more foreboding. He correctly predicted that computers and computing algorithms were going to control important aspects of our lives. If we don’t know anything about computing, we don’t even know how to ask about those algorithms. It shouldn’t be magic.  Even if you’re not building these algorithms, simply knowing about them gives you power. C.P. Snow argues that you need that power.
  4. To use an important new form of literacy. Alan Kay made the argument in the 1970’s that computing is a whole new medium. In fact, it’s human’s first meta-medium — it can be all other media, and it includes interactivity so that the medium can respond to the reader/user/viewer. Computing gives us a new way to express ideas, to communicate to others, and to explore ideas.  Everyone should have access to this new medium.
  5. To have a new way to learn science and mathematics. Mathematics places a critical role in understanding our world, mostly in science. Our notation for mathematics has mostly been static equations. But code is different and gives us new insights. This is what Andy diSessa has been saying for many years. Bruce Sherin, Idit Harel, Yasmin Kafai, Uri Wilensky, and others have shown us how code gives us a powerful new way to learn science and mathematics. Bootstrap explicitly teaches mathematics with computing.  Everyone who learns mathematics should also learn computing, explicitly with programming.
  6. As a job skill. The most common argument for teaching computer science in the United States is as a job skill.  The original video argued that everyone should learn programming because we have a shortage of programmers. That’s just a terrible reason to make every school child learn to program. That’s what Larry Cuban was arguing this last summer. Tax payers should not be funding a Silicon Valley jobs program. Not everyone is going to become a software developer, and it doesn’t make any sense to train everyone for a job that only some will do. But, there’s some great evidence from Chris Scaffidi (that I learned about from Andy Ko’s terrific VL/HCC summary) showing that workers (not software developers) who program make higher wages than those comparable workers who do not. Learning to program gives students new skills that have value in the economy. It’s a social justice issue if we do not make this economic opportunity available to everyone.
  7. To use computers better. This one is a possibility, but we need research to support it. Everyone uses computers all the time these days. Does knowing how the computer works lead to more effective use of the computer?  Are you less likely to make mistakes? Are you more resilient in bouncing back from errors? Can you solve computing problems (those that happen in applications or with hardware, even without programming) more easily?  I bet the answer is yes, but I don’t know the research results that support that argument.
  8. As a medium in which to learn problem-solving. Finally, computer programming is an effective medium in which we can teach problem-solving. Just learning to program doesn’t teach problem-solving skills, but you can use programming if you want to teach problem-solving. Sharon Carver showed this many years ago. She wanted students to learn debugging skills, like being able to take a map and a set of instructions, then figure out where the instructions are wrong. She taught those debugging skills by having students debug Logo programs. Students successfully transferred those debugging skills to the map task. That’s super cool from a cognitive and learning sciences perspective. But her students didn’t learn much programming — she didn’t need much programming to teach that problem solving skill.But here’s the big caveat: They did not learn enough programming for any of the other reasons on this list!  The evidence we have says that you can teach problem-solving with programming, but students won’t gain more than that particular skill. That is a disservice to students.

Certainly there are more reasons than these, and I’ve seen several in the response to this blog post, and some in the comments below.

This was just one slide in Brenda’s talk. Her overall point was much more broader and more significant. I strongly agree with Brenda’s key point: CS for All is a social justice issue. Learning computing is so important that it is unjust to keep it from some students. Currently, CS is disproportionately unavailable to poorer students, to females, and to minority ethnic groups. We need CS for All.

October 18, 2017 at 12:30 pm 15 comments

Unpacking models of what the $USD1.3B might achieve in Computing Education: We need long-term vision and will

I wrote my Blog@CACM post for September on the massive investments in CS Education announced last week (see post here): $200M/year from the US Department of Education announced by the White House on Monday, then $300M over five years from the Tech industry announced on Tuesday. I have read analyses saying that the money isn’t really promised or isn’t new (see concerns in this post), and others are shunning the initiative because of White House policies (see link here). I took the promises at face value. My post starts congratulating Hadi Partovi and Cameron Wilson of and Ivanka Trump who were behind these initiatives, then I offered two back-of-the-envelope models of what $1.3B in five years could do:

  • I extrapolated the New York City model (of a significant computing education experience to every child in every school within grade bands) to the whole of the US, which would likely take more than a magnitude more funding.
  • The funding is enough to pay for a CS teacher in every school, but I argued that it wouldn’t really work. We face a shortage of STEM teachers, and those few are the teachers that we can most likely recruit to CS. CS teacher attrition is so high that we couldn’t keep up with the losses, since we have so few mechanisms of pre-service CS teacher preparation.

I received many responses, queries, and criticisms of that blog post (from email, Facebook, and Twitter).  I am explaining and unpacking the CACM blog post here. I am not going to delete or change the CACM blog post. My mentor, Janet Kolodner, told me once not to dwell on any paper, trying to make it a masterpiece before publishing it. Rather, she suggested that we should just keep publishing. Explore lots of ideas in lots of papers, and publish as a way of thinking with a community. It’s okay to publish something you thought was right, and later find that it’s wrong — it documents the explored trails.

What I learned about the effort in NYC

I said that NYC was aiming to provide a quality computing learning experience for every student in every grade in every school, as I learned last October (and blogged about it here). I learned that the goal is now mandating a computing learning experience in every grade band, so not every year. It’s still a markedly different model than one teacher per school, and doesn’t change the costs considerably.

I learned that (as one might expect) that the effort in NYC is in both the NYC Department of Education and in CSNYC. It’s great that there are many people in the NY DoEd working on CS education! I was told on Twitter that some of what I attributed to CSNYC is actually in NY Department of Education. I don’t know what I mis-attributed, but I’m sure that it’s because I get confounded over “CSNYC” representing “the effort to provide CS education across NYC” and “the organization that exists to provide CS education across NYC.” I don’t understand the split between NYC DoEd and the CSNYC organization, and I’m not going to guess here. I am sure that it’s important for the people involved, but it’s not so important for the model and national analysis.

Explaining my Estimates in Contrast to’s has made their model of the one-time cost of expanding access to K-12 computer science (CS) available at this Google doc. According to their model, it’s clear that the $1.3B is enough to make CS education available in every elementary and secondary school. They have more empirical data than anyone else on putting CS in whole districts, and their data suggest that costs are decreasing as they gain more efficiencies of scale.

Hadi challenged several points in my blog post on Facebook. I won’t replicate all of our exchange, and only include three points here:

  • I argue that we will probably have to pay future CS teachers more in the future, at least as teacher stipends. That prediction is based on trends I see in the states I work with and economics. States are facing teacher shortages, especially in STEM. Aman Yadav shared an article (see link here) that students studying to be teachers fell by 40% from the 2010-2011 academic year to the 2014-2015 academic year. If the supply of teachers is growing more slowly than the rate at which we’re trying to grow CS, we will have to provide incentives to make CS more attractive. Lijun Ni’s dissertation explored the barriers for teachers to become CS teachers (e.g., it’s a lot easier and more pleasant to stay a math teacher). Costs are likely to grow as the labor shortage increases.
  • Some of my costs are too high, e.g., I estimated the cost to develop a high school CS teacher as $10K, where NSF’s studies found it was closer to $8.6K. I used a ballpark 50% of high school CS teacher development for the costs of elementary school CS teacher development.  Since it’s clear that there is enough to prepare one CS teacher per school, I think my numbers are close enough.
  • I believe that extrapolating the NYC model across the country would be even more expensive than it is in NYC. Travel costs in NYC are much less than in rural America. While NYC is very diverse, the rest of the United States is just as diverse. I got to see Ann Leftwich at Indiana University on Saturday. She told me that some of the schools she works with resist teaching science at all! It’s really hard to convince them to teach CS. I expect that there is a similar lack of will to teach CS across the US.

Not all of my estimates are research-based. We don’t have research on everything. Changing all US schools happens so rarely that we do not have good models of how it works. I don’t think that the empirical data of what we have done before in CS Ed is necessarily predictive of what comes next, since most of our experience with CS Ed at-scale is in urban and suburban settings. Getting everywhere is harder. I have observed about “Georgia Computes!” — 1/3 of the high schools in GA got someone that Barbara trained in CS, and that’s likely the easiest 1/3. The next 2/3 will be harder and more expensive.

What I Missed Entirely

As Hadi correctly called me on, the biggest cost factor I missed is the development of curriculum. Back in July, I blogged about Larry Cuban’s analysis that suggested that we need to re-think how we are developing and disseminating CS curriculum in the United States (see link here). We have to develop a lot more curriculum in collaboration with schools, districts, and states nationwide. The US will never adopt a single curriculum nationwide for any subject — it’s not how our system was developed, and it’s why Common Core did not reach all 50 states. The US education system is always about tailoring, adapting, and working with local values and politics. Curriculum is always political.

Mike Zamansky just posted a blog post critiquing some of the curriculum he’s seeing in NYC (see post here). I don’t agree with Mike’s post, but I wholeheartedly agree with his posting. We should argue about curriculum, negotiate what’s best for our students, and create curriculum that works for local contexts.  There is going to be a lot of that nationwide as we take steps towards providing computing education to all students. The iteration and revision will be expensive, but it’s a necessary expense for sustainable, longterm computing education.

What should we do with the money

At a talk I gave at Indiana University on Friday, Katie Siek asked me my opinion. What do I want to see the funding be used for?

It would be great if some of that funding could start more pre-service CS teacher preparation programs. I have argued that we should fund chairs of CS Education in top Schools of Education (see post here). Germany uses this model — they create CS Education professors who will be there for a career, producing CS teachers, supporting local communities of CS teachers, and serving as national models. An endowed chair is $1-3M at most universities. That is not very expensive for a longterm impact.

I prefer an NYC-like model of reaching every student to the model of a teacher for every school. The data I’ve seen from our ECEP states suggests that most CS teachers teach only a single computing class, and that class is typically mostly white/Asian and male. One CS  teacher per school doesn’t reach all the female and under-represented minority students. Equity has to be a top priority in our choices for these funds, since CS education is so inequitable.

My greatest wish is for computational literacy to be woven into other disciplines, especially across all of STEM. I devoted my career to computing education because I believe in the vision of Seymour Papert, Cynthia Solomon, Alan Kay, and Andrea diSessa. Computational literacy can improve learning in science, mathematics, art, language, and other disciplines, too.

I don’t argue that computer science is more important than other STEM subjects. Rather, computing makes learning in all the other STEM subjects better.

I want us to teach real computational literacy across subjects, not just in the CS class hidden away, and not just in an annual experience. I recognize that that’s a long-term, expensive vision — probably two orders of magnitude beyond the current initiative. We need more long-term thinking in CS education, like building up the CS teacher development infrastructure and making the case to people nationwide for CS education. We are not going to solve CS for All quickly.

When the K-12 CS Framework effort launched back in 2015, I told the story here about a conversation I had with Mike Lach (see post here). He pointed out that the last time we changed all US schools, it was in response to the Civil Rights movement. That’s when we started celebrating MLK Jr Day and added African-American History month. He asked me to think about how much national will it took to make those changes happen. We don’t have that kind of national will in CS education in this country — yet. We have a lot more groundwork to do before we can reach CS education for all students or all schools, and funding alone is not going to get us there.

October 4, 2017 at 7:00 am 10 comments

Google study on the challenges for rural communities in teaching CS

Google continues their series of reports on the challenges of teaching CS, with a new report on rural and small-town communities in the US.  This is an important part of CS for All, and is a problem internationally.  The Roehampton Report found that rural English schools were less likely to have computing education than urban schools.  How do we avoid creating a computing education divide between urban and rural schools?

This special brief from our Google-Gallup study dives into the opportunities and challenges for rural and small-town communities. Based on nationally representative surveys from 2015-16, we found:

  • Students from rural/small-town schools are just as likely as other students to see CS as important for their future careers, including 86% who believe they may have a job needing computer science.

  • Rural/small-town parents and principals also highly value CS, with 83% of parents and 64% of principals saying that offering CS is just as or more important than required courses.

  • Rural/small-town students are less likely to have access to CS classes and clubs at school compared to suburban students, and their parents are less likely to know of CS opportunities outside of school.

  • Rural/small-town principals are less likely to prioritize CS, compared to large-city or suburban principals.

Source: Google for Education: Computer Science Research

September 4, 2017 at 7:00 am 1 comment

Universities need more Blacks: How do we know if we’re making progress?

The below article is pretty stunning — a sitting justice on the Supreme Court calling out an elite University for a lack of diversity.  This isn’t just about the University of Michigan. This isn’t about computing, but it could be. Sotomayor is speaking about an important social need, where computing is part of the problem.  We see that in the Generation CS report. We are falling further behind in getting African Americans into CS. (An interesting side note here that Georgia Tech alumna, Sarita Yardi (whom I mentioned in this blog post), just won an award at the University of Michigan for her work in promoting diversity.)

Daryl Chubin sent me a workshop report on “Better STEM Outcomes: Developing an Accountability System for Broadening Participation.” How would we know if we’re doing better?  We could measure participation rates in Universities, but that will take time to change.  How do you know if you’re doing the right things now for success later? For example, what would you measure at the high school level that would suggest progress towards broader participation in the future at the undergraduate level?  It’s a good question — we’re far from where we need to be, but we need to take meaningful steps towards the goal of broad participation in computing.

U.S. Supreme Court Justice Sonia Sotomayor on Monday said future diversity on college campuses is a key to diversifying society at large, noting the lack of black students at the University of Michigan is a “real problem.”

Sotomayor, the first Hispanic on the Supreme Court and daughter of Puerto Rican-born parents, was asked by a moderator what a university will need to look like in the years ahead to be inclusive and innovative.

“It’s going to look a lot like Michigan,” she said to applause, “but with even greater diversity.” The percentage of black undergraduate students at the University of Michigan has been pretty steady in recent years at less than 5 percent. Hispanics are 5.5 percent. White undergraduates are 65.4 percent.

Source: Sotomayor says University of Michigan needs more blacks

July 14, 2017 at 7:00 am 1 comment

Older Posts

Recent Posts

June 2018
« May    


Blog Stats

  • 1,519,612 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 5,276 other followers

CS Teaching Tips