Posts tagged ‘learner-centered design’

We should be emphasizing design of computing over teaching computational thinking

Alan Kay, Cathie Norris, Elliot Soloway, and I have an article in this month’s Communications of the ACM called “Computational Thinking Should Just Be Good Thinking.” (See link here, and a really nice summary at U-M which links to a preprint draft.) Our argument is that “computational thinking” is already here — students use computing every day, and that computing is undoubtedly influencing their thinking. But that fact is almost trivial. What we really care about is effective, critical, “expanded” thinking where computing can play a role in helping us think better. To do that, we need better computing.

It’s more important to improve computing than to teach students to think with existing computing. The state of our current tools is poor. JavaScript wasn’t designed to be learnable and to help users think. (Actually, I might have just stopped with “JavaScript wasn’t designed.”) We really need to up our game, and we should not be focusing solely on how to teach students about current practices around iteration or abstraction. We should also be about developing better designs so that we spend less time on the artifacts of our current poor designs.

Ken Kahn called us out, in the comments at the CACM site, suggesting that general-purpose programming tools are better than building specialized programming tools. I wrote a Blog@CACM post in response “The Size of Computing Education, By-The-Numbers.” We have so little success building tools that reach large numbers of students that it doesn’t make sense to just build on our best practice. They may all be local maxima. We should try a wide variety of approaches.

I got asked an interesting question on Twitter in response to the article.

Do you think @Bootstrapworld and @BerkeleyDataSci Data 8 modules both embody your philosophy?

I don’t think we’re espousing a philosophy. We’re suggesting a value for design and specifically improved design of computing.

Bootstrap clearly does this. The whole Bootstrap team has worked hard to build, iterate, test, and invent. If you haven’t seen it, I recommend Shriram Krishnamurthi’s August 2019 keynote at the FCRC. They solved some significant computer science design problems in creating Bootstrap.

Berkeley’s Data 8 is curriculum about existing tools, R and Jupyter notebooks. That’s following an approach like most of computational thinking — the focus is on teaching the existing tools. That’s not a bad thing to do, but you end up spending a lot of time teaching around the design flaws in the existing tools. I just don’t buy that R or Jupyter notebooks are well-designed for students. We can do much better. LivelyR (see link here) is an example of trying to do better.

We should be teaching students about computing. But computing is also the most flexible medium humans have ever invented. We should be having an even greater emphasis on fixing, designing, and inventing better computing.


Many thanks to Barbara Ericson, Amy Ko, Shriram Krishnamurthi, and Ben Shapiro who gave me comments on versions (multiple!) of this essay while it was in development. They are not responsible for anything we said, but it would be far less clear without them. The feedback from experts was immensely valuable in tuning the essay. Thanks!

November 13, 2019 at 2:00 am 5 comments

Education is About Providing Hope to Everyone: Contrasting the Lost Einsteins and Kennett, Missouri

I’ve had two articles bouncing around in my head that offer contrasting views of higher education and for me, of the purpose for computing education.

In “Lost Einsteins: The Innovations We’re Missing,” the NYTimes tells us about unequal access to opportunity in the United States.  We do not have a meritocracy. Our inventors, patent holders, and innovators overwhelmingly are male, white, and upper income. Two children of equal ability do not get the same access to opportunity, if one is poor, female, or from a minority group. That opportunity includes higher education, access to funding, and the social capital of figuring out how to file a patent or produce an invention.

Women, African-Americans, Latinos, Southerners, and low- and middle-income children are far less likely to grow up to become patent holders and inventors. Our society appears to be missing out on most potential inventors from these groups. And these groups together make up most of the American population.  The groups also span the political left and right — a reminder that Americans of different tribes have a common interest in attacking inequality.

In “A Dying Town: Here in a corner of Missouri and across America, the lack of a college education has become a public-health crisis,” the Chronicle of Higher Education tells us the story of Kennett, Missouri, a town with little hope and few college degrees.  Perhaps it’s correlation, but maybe it’s causation. Only one in 10 adults in Kennett, MO has a four-year degree.  The article points out the correlates for attaining a college degree. There are decreased mortality rates with college attendance.

It would be easy to say this is just about being poor, but people who study the phenomenon say it’s not that simple. Yes, having a job — and the paycheck and health insurance that come with it — matters. Those aren’t all that make a difference, however. Better-educated people live in less-polluted areas, trust more in science, and don’t as frequently engage in risky behaviors. Have a college degree and you’re more likely to wear a seat belt and change the batteries in your smoke alarm.

Both of them are sad stories. I’m struck by the differences in the desired goal in each.  In “Lost Einsteins,” we are told about the innovations and inventions we all are missing out on, because access to opportunity (including higher education) is so biased. In “A Dying Town,” we’re told that everyone need access to the opportunity for higher education.  In Kennett, MO, a college degree means hope, and hope means life — literally.

In “Lost Einsteins,” opportunities like higher education are about creating inventors and innovators. In “A Dying Town,” opportunities like higher education are about improving quality and length of life.  Contrast these perspectives as being like coaching a sports champion and providing public health. I made a similar contrast in my book Learner-Centered Design of Computing Education in how we think about computing education.  Many CS teachers are trying to produce innovators, inventors, champions, and Tech heroes — they want their students to go to the great Tech companies, or invent the next must-have app, or start a company that will be worth millions if not billions.  I argue that we have a much greater need to provide everyone with the computing literacy that they need to be successful in the 21st Century.  It is important to coach the champions, but not at the cost of providing the public health that everyone needs.

I’m curious about the relationship between college degrees and the health issues in Kennett, MO.  I have taught undergraduates for over 25 years.  I’ve never taught anyone to wear a seat belt or to change the batteries in their smoke alarms.  Where did they learn that?  Is it just because they’re smarter after they get the degree?  Or were they prone to do those things anyway, because they were the kind that sought out higher education?  I don’t know, but if it’s causal, we have to be careful not to lose those important side benefits of a college degree as we downsize higher education.  As we get rid of the teachers for the MOOCs, and get rid of the campus for virtual space, we might also get rid of whatever intangibles that lead a college graduate to make the right choices in life, like wearing a seat belt and having a long, healthy, and productive life.

February 5, 2018 at 7:00 am 1 comment

Dagstuhl Seminar Poster: Critiquing CS Assessment from a CS for All Lens

Today’s the last day of the Dagstuhl Seminar I’ve been attending on Assessing Learning In Introductory Computer Science (see seminar description here).  We all presented posters about the theme, and I presented a poster where I critiqued CS assessment from a CS for All Lens (see Slideshare link).

Critiquing_CS_Assessment_from_a_CS_for_All_lens__Dagstuhl_Seminar_Pos…

Not everyone who learns CS is going to want to be a software engineer.  Then why teach them CS?  And how would you teach them, if the goal is not for students to develop software to professional standards?  That’s what my new book is about.

If we have different learning outcomes, assessment has to change, too.  I argue that we have to consider what the learner wants to do and wants to be (i.e., their desired Community of Practice) when assessing learning.  Different CoP, different outcomes, different assessments.

I learned a lot from this seminar.  I was in a great breakout group that came up with shared definitions of a notional machine and student misconceptions, and defined a research agenda for understanding student misconceptions.  In a breakout group on conveying social and professional practice (bottom line for me: I’m not sure that we can or should in school), Amy Ko taught me a whole new way of thinking about MOOCs, about the positive role that they can play in society.  The whole week has me thinking more about adult learning and how we support lifelong development.  I have plans to write blog posts about these themes in future weeks.  But first, a long trip home.

February 19, 2016 at 7:28 am 1 comment

What does it mean to assess Computational Thinking?

One of the arguments I develop in my book on learner-centered design of computing education is that computational thinking, using Jeannette Wing’s description, is implausible.  There’s part of her description that talks about computing providing a medium for advancing thinking and learning in other domains — that’s the application part of computing, and that’s quite plausible.  I call that part computational literacy because that’s the name Andrea diSessa gave to that idea years ago. Much of my book is about how to help students (of all kinds, from graphic designers to teachers to undergraduates) develop computational literacy.  Then there’s the part of Jeannette’s description that suggests that learning computing will impact everyday thinking and problem-solving, e.g., people will use ideas about caching when packing for a trip.  There is no evidence to support the belief that that will happen. Many studies investigating this kind of impact have not found that effect. (I’ve reported in the past how educational psychologists find computational thinking implausible.)  Sure, there other definitions of computational thinking (I reference the others in my book), but they all have this same thread — computational thinking is about thinking that helps outside of computing.

So what does it mean to assess computational thinking?  Most computational thinking assessments I’ve seen fail to connect the computing to some other discipline.  For both of Wing’s sets of goals, we need to show that students are learning computing.  That’s a necessary part — if you don’t know computing, you can’t apply that knowledge and you can’t transfer it.  But it’s not sufficient.  Students must be applying, connecting, or transferring the computing knowledge to other domains to be computational thinking.

SRI is developing a set of computational thinking assessments.  From poking through their website, I’m not finding any examples, so I don’t know if they succeed where others have not.  Their process is promising.

As part of the NSF-funded Principled Assessment of Computational Thinking (PACT) suite of projects, SRI Education has been working with curriculum authors and teachers, assessment experts, and computer scientists to develop assessments for ECS.

ECS emphasizes inquiry-based teaching to develop students’ problem solving skills, as well as their abilities to explain, elaborate, and evaluate what they are learning, often using multiple representations of particular solutions. These skills go well beyond recalling facts or giving inputs to a program and predicting its outputs. As a result, the SRI PACT team had to design and develop assessment tasks that elicited students’ problem solving and inquiry skills in authentic contexts and gave them opportunities to represent their skills in their own words and ways.

Applying a principled design method, the team first developed generalized design templates for computational thinking practices. These practices refer to how students design and implement creative solutions and artifacts, how they design and apply abstractions and models, and how they analyze their computational work and the work of others (among other practices). We then used these templates to guide the development of assessment tasks and scoring rubrics aligned with the skills related to the learning goals of the ECS curriculum.

Source: Broadening Student Participation in Secondary Computer Science Through Principled Assessment of Computational Thinking (PACT) | SRI International

January 13, 2016 at 8:12 am 15 comments

Book released: Learner-Centered Design of Computing Education: Research on Computing for Everyone

My book in John Carroll’s Human-Centered Informatics series was just released: Learner-Centered Design of Computing Education: Research on Computing for Everyone  http://dx.doi.org/10.2200/S00684ED1V01Y201511HCI033 

The book is available on Amazon here. There’s a cool website with all options for getting the book here.

I’ve put a copy of the Table of Contents and Preface here: http://bit.ly/LCD-CE-Guzdial

My goal is to provide an overview (110 pages worth) of the research (over 300 references) related to computing education for everyone. I aim to connect literature from the traditional computing education research communities (e.g., SIGCSE and ICER) to research in learning sciences, educational psychology, and human-computer interaction.  There is a lot of history in the book because that’s how I like to view these things.

I spent most of 2015 writing this book, and this year set the context for the book.  This was the year that Chicago, San Francisco, Arkansas, and then New York City decided to require computing for everyone. I had all those efforts in mind when I was writing, to tell what research has found about teaching computing to everyone.

I expect to be blogging on some of themes in the book in 2016. Hope you all have Happy Holidays!

December 23, 2015 at 7:51 am 12 comments


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 9,005 other followers

Feeds

Recent Posts

Blog Stats

  • 1,880,378 hits
October 2021
M T W T F S S
 123
45678910
11121314151617
18192021222324
25262728293031

CS Teaching Tips