Posts tagged ‘peer instruction’

The need for better software and systems to support active CS learning

I believe strongly in active learning, such as Peer Instruction (as I have argued here and here).  I have discovered that it is far harder than I thought to do for large CS classes.

I decided to use clickers in CS1315 this semester (n=217), rather than use the colored index cards that I’ve used in the past for Peer Instruction (see blog post here). With cards, I can only take a vote — no histogram of results, and I can’t provide any grade value for the participation. With clickers, I can use the evidence-based practice as developed by Eric Mazur, Cynthia Lee, Beth Simon, Leo Porter, et al. (plugging the Peer Instruction for CS website):

  • Ask everyone to answer to prime their thinking about the question,
  • ask students to discuss the question in groups of 2-3,
  • then vote again (consensus within groups), and
  • show the results and discuss the misconceptions.

To make it worthwhile, I’m giving 10 points of final course grade for scoring over 50% on the second question (only — first one is just to get predictions and activate knowledge), 5 points for scoring over 30%.

I’m trying to do this all with campus-approved standards: TurningPoint clickers, TurningPoint software.  I’d love to use an app-based solution, but our campus Office of Information Technologies warns against it.  They can’t guarantee that, in large classes, the network will support all the traffic for everyone to vote at once.

The process is so complicated: Turn on clickers in our learning management software (a form of Sakai called T-Square), download the participant list, open up ResponseWare and define a session (for those using the app version), plug in receiver. After class, save the session, integrate the session with the participant list, then integrate the results with T-Square for grades. The default question-creation process in TurningPoint software automatically shows results and demands a specific format (e.g., which makes it hard to show screenshots as part of a question), so I’m using “Poll Anywhere” option, which requires me to process the session file after class to delete the first question (where everyone votes to prime their thinking) and to define the correct response(s) for each question.

I’m willing to do all that. But it’s more complicated than that.

Turns out that Georgia Tech hasn’t upgraded to the latest version of the TurningPoint software (TurningPoint Cloud).  GT only supports TurningPoint 5. TurningPoint stopped distributing that version of the software in May 2016, so you have to get it directly from the on-campus Center for Teaching and Learning. I got the software and installed it — and discovered that it doesn’t run on the current version of MacOS, Sierra.

I did find a solution. Here’s what I do.  Before each lecture, I move my lecture slides to a network drive.  When I get to class, I load my lecture on the lecture/podium computer (which runs Windows and TurningPoint 5 and has a receiver built-in).  I gather all the session data while I teach with the podium computer and do live coding on my computer (two screens in the massive lecture hall).  I save the session data back to the network drive.  Back in my office, I use an older Mac that still runs an older version of MacOS to download the session data, import it using TurningPoint 5, do all the deletions of priming questions and correct-marking of other questions, then integrate and upload to T-Square.

Counting my laptop where I make up slides and do live coding, my Peer Instruction classes require three computers.

Every CS teacher should use active learning methodologies in our classes.  Our classes are huge.  We need better and easier mechanisms to make this work.

 

March 31, 2017 at 7:00 am 7 comments

Why Students Don’t Like Active Learning: Stop making me work at learning!

I enjoy reading Annie Murphy Paul’s essays, and this one particularly struck home because I just got my student opinion surveys from last semester.  I use active learning methods in my Media Computation class every day, where I require students to work with one another. One student wrote:

“I didn’t like how he forced us to interact with each other. I don’t think that is the best way for me to learn, but it was forced upon me.”

It’s true. I am a Peer Instruction bully.

At a deeper level, it’s amazing how easily we fool ourselves about what we learn from and what we don’t learn from.  It’s like the brain training work.  We’re convinced that we’re learning from it, even if we’re not. This student is convinced that he doesn’t learn from it, even though the available evidence says she or he does.

In case you’re wondering about just what “active learning” is, here’s a widely-accepted definition: “Active learning engages students in the process of learning through activities and/or discussion in class, as opposed to passively listening to an expert. It emphasizes higher-order thinking and often involves group work.”

Source: Why Students Don’t Like Active Learning « Annie Murphy Paul

July 11, 2016 at 7:27 am 7 comments

Why we are teaching science wrong, and how to make it right: It’s about CS retention, too

Important new paper in Nature that makes the argument for active learning in all science classes, which is one of the arguments I was making in my Top Ten Myths blog post. The image and section I’m quoting below are about a different issue than learning — turns out that active learning methods are important for retention, too.

Active learning is winning support from university administrators, who are facing demands for accountability: students and parents want to know why they should pay soaring tuition rates when so many lectures are now freely available online. It has also earned the attention of foundations, funding agencies and scientific societies, which see it as a way to patch the leaky pipeline for science students. In the United States, which keeps the most detailed statistics on this phenomenon, about 60% of students who enrol in a STEM field switch to a non-STEM field or drop out2 (see ‘A persistence problem’). That figure is roughly 80% for those from minority groups and for women.

via Why we are teaching science wrong, and how to make it right : Nature News & Comment.

August 3, 2015 at 7:49 am Leave a comment

A kind of worked examples for large classrooms

I passed on to the MediaComp-Teach list something I’m trying to do in my class this semester.  I had several suggestions to share it with others. It’s based on worked examples and peer instruction.

I’m teaching Python MediaComp, first time in 8 years on campus.  We have just shy of 300 students, and I have 155 in my lecture.  While I’m a big fan of worked examples, the way I’ve used them in small classes of 30-40 won’t work with 155.

Here’s what I’m doing this semester.  Every Thursday, I distribute a PDF with a bunch of code in sets, like this:

worked-examples-pic1

The students are getting 12-20 little programs every Thursday.  Most students type them ALL in before lecture Friday morning at 10 am.

Then on Friday, I put up PI-like questions like this:

Exercises4-5_pptxb

and

 

Exercises4-5_pptx

Students are required to work on these in groups.  I walk around the lecture hall and insist that nobody sit alone.  I get lots of questions in the five minutes when everybody’s working away.

We don’t have clickers, but I’ve given every student four colored index cards.  When I call for votes, everybody holds up the right colored card.

Here’s the interesting part — they TALK about the programs.  Here’s a question in Piazza with a student’s answer:

CS_1315__4_unread_

 

The other instructor in the class is also using these, and he says that the students are using them after the Friday lecture as examples to study from and to use in building homework.  I’ve had lots of comments about these from students, in office hours and via email.  They find them valuable to study.

My worked examples aren’t giving them much process.  I am getting them to look at lots of programs, type them in, get them running, and think about them.  I’m pretty excited about it.  Given that I haven’t been in this class in the last 8 years, the class isn’t really “mine” anymore.  I’m trying to be sensitive to how much I change about a huge machine (14 TA’s, two instructors…) that I’m only visiting in.  But everyone seems into this, and it’s fitting in pretty easily.

I have been uploading all of the PDF’s, PPTs, and PY’s  at http://home.cc.gatech.edu/mediaComp/95, if you’re interested.  (There are some weeks missing because Atlanta actually had some Winter this year.)

 

March 21, 2014 at 1:51 am 14 comments

To get Interest: Catch and Hold Attention

I’ve been thinking about this question a lot.  It’s informing my next round of research proposals.

We know more about how to retain students these days, the “hold” part of Dewey’s challenge mentioned below — consider the UCSD results and the MediaComp results.  But how do we “catch” attention?  We are particularly bad at “catching” the attention of women and minority students.  Our enrollment numbers are rising, but the percentage of women and under-represented minorities is not rising.  Betsy DiSalvo has demonstrated a successful “catch” and “hold” design with Glitch.  Can we do this reliably?  What are the participatory design processes that will help us create programs that “catch”?

So what can parents, teachers and leaders do to promote interest? The great educator John Dewey wrote that interest operates by a process of “catch” and “hold”—first the individual’s interest must be captured, and then it must be maintained. The approach required to catch a person’s interest is different from the one that’s necessary to hold a person’s interest: catching is all about seizing the attention and stimulating the imagination. Parents and educators can do this by exposing students to a wide variety of topics. It is true that different people find different things interesting—one reason to provide learners with a range of subject matter, in the hope that something will resonate.

via The Power Of Interest « Annie Murphy Paul.

December 18, 2013 at 1:04 am 3 comments

Success in Introductory Programming: What Works?

Leo Porter, Charlie McDowell, Beth Simon, and I collaborated on a paper on how to make introductory programming work, now available in CACM. It’s a shorter, more accessible version of Leo and Beth’s best-paper-award winning SIGCSE 2013 paper, with history and kibitzing from Charlie and me :

Many Communications readers have been in faculty meetings where we have reviewed and bemoaned statistics about how bad attrition is in our introductory programming courses for computer science majors (CS1). Failure rates of 30%–50% are not uncommon worldwide. There are usually as many suggestions for how to improve the course as there are faculty in the meeting. But do we know anything that really works?

We do, and we have research evidence to back it up. Pair programming, peer instruction, and media computation are three approaches to reforming CS1 that have shown positive, measurable impacts. Each of them is successful separately at improving retention or helping students learn, and combined, they have a dramatic effect.

via Success in Introductory Programming: What Works? | August 2013 | Communications of the ACM.

August 5, 2013 at 1:40 am 16 comments

Older Posts


Recent Posts

May 2017
M T W T F S S
« Apr    
1234567
891011121314
15161718192021
22232425262728
293031  

Feeds

Blog Stats

  • 1,387,415 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 5,036 other followers

CS Teaching Tips