Posts tagged ‘public policy’

Bootstrap computer science in Physics, as well as Algebra

This is a really cool announcement.  I believe that computing helps with all kinds of STEM learning, and admire the work at Northwestern on Agent Based Learning in STEM, Project GUTS, and Bootstrap.  It’s particularly important for getting CS into schools, since so few schools will have dedicated CS teachers for many years yet (as described here for Georgia). I’m excited to see that Bootstrap will be moving into Physics as well as Algebra.

Bootstrap, one of the nation’s leading computer science literacy programs, co-directed by Brown CS faculty members Shriram Krishnamurthi and Kathi Fisler (adjunct), continues to extend its reach. Bootstrap has just announced a partnership to use its approach to building systems to teach modeling in physics, an important component of the Next Generation Science Standards (NGSS). This project is a collaboration with STEMTeachersNYC, the American Association of Physics Teachers, and the American Modeling Teachers Association.

Source: CS Blog: Bootstrap Announces A New STEM Education Model That Combines Computing, Modeling, And Physics

May 18, 2016 at 7:45 am 9 comments

Factors that Increase Students’ Interest in Becoming a Middle or High School Computing Teacher

These are the right sort of questions to be asking, and then using when creating real programs.  How would we get more undergraduate computing majors to consider teaching?  We can’t do much about salary.  Free tuition and student loan forgiveness are feasible and could result in many more teachers (and are being explored by ECEP states).

CERP asked undergraduate computing majors what would increase their interest in becoming a middle or high school computing teacher. As seen in the above graphic, financial incentive in the form of a higher teaching salary, free tuition for teacher training, and forgiven student loans were the top factors increasing students’ interest in becoming a middle or high school computing teacher. These findings provide insights into how to generate more computing educators for the K-12 school system, which is becoming increasingly important, given recent efforts to promote widespread K-12 computing education.

Source: Factors that Increase Students’ Interest in Becoming a Middle or High School Computing Teacher – CRN

May 11, 2016 at 7:45 am 6 comments

What should a post-full Computing Education Researcher do next?

My school chair, Annie Anton (most recently famous for being on a Presidential Commission on Cybersecurity), asked me to think about what I’d like to do, what I’d like to make, and what I’d like to be next — and what are the challenges to those goals. It’s a great exercise for anyone post-full professor. I have no tenure or promotion goals to achieve, but I “am not dead yet.” What comes next?

I’ve been privileged to be part of some significant efforts: From “Georgia Computes!” and “Media Computation,” to “ECEP” and our ebooks. Both of my currently-funded NSF projects (ECEP and our Ebooks) end in Fall 2017. So I have to do something else to fund graduate students and to cover the overhead of being faculty in a research university.

Below are some of the options that appeal to me. It isn’t really a wish list — there are incompatible activities on this list. This is an exploration of possibilities that particularly appeal to me. Many interesting and worthwhile problems that I might pursue aren’t interesting to me because I don’t think I have any useful leverage on the problem, or the problem is too big to make a useful dent in it..

I’m sharing it as a blog post because it might be a useful starting point for similar reflections for other post-full faculty.

To be part of a significantly-sized Computing Education Research group

The last few weeks, I’ve been part of an NSF Expeditions preliminary proposal around computing education research. It’s been a deeply engaging intellectual activity, and one that I’d like to do more often. It’s been terrific to work with a group of faculty who know computing education research (different emphases, different areas of research, but with a common core literature and research values) to have detailed discussions about what we think is known and what’s important to do next.

I see my colleagues around here doing that kind of planning in HCI and in Robotics, and it probably happens in any area with three or more faculty. I used to be a peripheral participant in meetings like that at University of Michigan, when Elliot Soloway, Phyllis Blumenfeld, Joe Krajcik, and Ron Marx were inventing technology-enhanced project-based learning for STEM. We used to have visioning activities like those when Janet Kolodner led the EduTech Institute here at Georgia Tech, but most of those faculty at the heart of the EduTech have moved on. (It’s even hard to find a digital footprint of EduTech today.)

You can do that kind of planning if you have several faculty in an area. It’s harder to do with one or two faculty and some students. It’s still hard to grow CER at scale in research-oriented computing departments. How many CER courses can one department offer, and when you hit that limit, what else will the CER faculty teach? Like any new area, it’s hard to explain it to all the other faculty, to get them to appreciate a candidate.

It would be great to be part of a Center doing the work that pushes the boundary of what we know and what we know how to do in computing education research. I know some universities that are thinking about building a Center that includes computing education research. Others, aren’t. There is some distrust of STEM Ed research — I once had a senior administrator say that an academic unit focused on STEM education research would happen on his campus “over his dead body.” I’d like to work with others to create significant, impactful projects in CER — the kinds of things that are bigger than what one or two people can do.

To create an organization/system to have a lasting impact on Computing Education in the US

Like most people in CER, I hope my work has research value in the future, but I don’t expect any of the particular products to last for long. I expect that no curriculum, assessments, tools, or standards that we’re developing for K-12 schools today will still be in schools in 20 years. All of these will have to change dramatically because the students we’ll be teaching, what we think we ought to teach, and how we teach will change. We’re at the very beginning of growth of the field, so now’s (a) when we expect to realize how little we know, and (b) when I hope that decision-makers will start asking, “What do we already know?” That’s a big part of why I wrote the book last year Learner-Centered Design of Computing Education: Research on Computing for Everyone. I wanted to put a signpost to say, “Here’s where we’ve been and where we are now in figuring out how to teach computing to everybody.”

I’ve got a few more years left in my career. I’d like to leave something of longterm use for computing education. I’m creating a CS Ed Research class at Georgia Tech, but classes come and go. We created a lot of learning science and technologies classes when we had those faculty in years past, but we can’t even teach all of those courses anymore.

We need to create organizations, systems, and programs to sustain computing education. Key to that goal is establishing CER in schools of Education. I would like to be part of that effort. Schools of Education are how we get education reforms to stick around in the United States. We need faculty doing CER in schools of Education. We need computing education in pre-service teacher education. I love the idea of defining introductory computer science classes for teachers. (Hint: “Python or Java?” is completely the wrong question, and not the least because both answers are wrong.)

To be part of growing Computing Education Research globally

My experience in India has me realizing how little I know about how most of the world’s education systems work (see blog post comparing Indian and US Education contexts). I also realize that computing education is growing all over the world. My years spent at the boundary of computer science and education suggest to me that I might have something to share in those efforts.

I was one of the co-founders of the International Computing Education Research (ICER) conference, and that’s the most rigorous CER conference around today. That’s great to have a high-quality conference, but there’s a lot more demand for CER than ICER can meet. The SIGCSE Symposium and ITICSE serve a larger audience than ICER, but are still mostly Western, mostly privileged, and mostly missing most of the world.

I’ve recently joined the program committees of both Koli Calling (Finland) and LaTICE (which has mostly Southeastern Asia, but moving to Saudi Arabia this next year and South Africa in two years). I would like to be involved in more international conferences. I want to understand what parts of the challenge of computing education are due to the design of the educational system and context, and what parts are inherent to the complexity of understanding computing.

The mechanics of being a participant in an international community are challenging. I’ve used NSF funds to go to ICER and Dagstuhl (in Germany), but that’s dissemination on a grant. How does one fund going to international conferences when it’s less about dissemination and more about scholarly exchange — me learning about their context, and us discussing research issues from different contexts? There probably are mechanisms, but beyond the ones used by a traditional US POP (Plain Ole Professor).

To focus on teaching

I still love to teach Media Computation. Every Spring, I get to teach around 150 non-technical majors about computation. There’s a set curriculum that is mostly programming-focused (about 80% intersection with my book), but I still find space to talk about Alan Turing and Claude Shannon, incompleteness theorem, and how “The Matrix” and “Sin City” were created. Could I become a full-time teaching faculty? I don’t like how they get typically treated (see this blog post), so I don’t think I would want to become teaching track.

If I did focus on my teaching, I’d need to do it in a context that values research-based CS teaching methods. I want to be able to say to my colleague teachers, “Did you see what Beth, Leo, and Cynthia are doing with peer-instruction?  Or how about what Leo and Dan are doing from the last SIGCSE proceedings? Let’s try that!” The teaching faculty that I know work very hard and care deeply. Especially with today’s enrollments, few of them have the capacity to read CER, too. I know I’d get bored if I couldn’t talk about the research, try to use it, and to extend it with my colleagues.

To just focus on research

I could hunker down and just do computing education research — no more public policy, no more broadening participation work, only occasional international conferences when we have something big to report. It is so hard to make traction on broadening participation in computing these days — diversity has taken a back-burner in many CS departments because they’re just trying to keep their head above water.

There are lots of research questions I’m interested in:

  • I recently attended a AAAS/NSF symposium on STEM Education (which I blogged about at Blog@CACM), and was struck again about how far behind computing education research (CER) is behind other discipline-based education research (DBER). Too much of what we know about CER is bound to particular classes and languages. (Because novices tend to attend to surface-level features, programming languages likely are important, but then we need to parameterize use the language to understand how different languages interact with student understanding.) So much of computing education is focused on implementation, and there is so much fundamental research yet to do. We know too little about misconceptions, learning progressions, alternative models of big ideas and thinking practices, and even, interaction of different natural languages with learning CS (see Yogendra Pal’s work). There is so much to do, and we are years behind other fields.
  • What is the right media for teaching about computation? I’m working on a couple of different kinds of ebooks now. I’ve always been interested in interactive multimedia (see MediaText that I did as a grad student), and the work of our ebooks is promising. I’ve even been thinking about the interaction between MOOCs and ebooks — how could they aid one another?
  • How do we provide education without a teacher? I think often about my trip to India and the need for learning without teachers. MIT recently produced a tablet that they literally just gave to kids in Ethiopia, and it did lead to gains in literacy (see article here). What would you put on a tablet to self-start learning about computing?

I don’t think I’d stop writing in the blog, at least in the forseeable future, for any of these paths. I like to write. The blog gives me an excuse. I hope it provides a service to readers.

(Thanks to the friends who gave me comments on earlier drafts of this document! I appreciate all of it!)

May 9, 2016 at 7:46 am 7 comments

Top business leaders, 27 governors, urge Congress to boost computer science education – The Washington Post

I saw on Facebook that Hadi Partovi was at Congress.  Now I see why — there’s an effort underway to get Congress to fund more in CS education.  I’m wondering what they want to get funded.  Incentives for teachers? Professional development? Pre-service education?  Does someone know the details?

Despite this groundswell, three-quarters of U.S. schools do not offer meaningful computer science courses. At a time when every industry in every state is impacted by advances in computer technology, our schools should give all students the opportunity to understand how this technology works, to learn how to be creators, coders, and makers — not just consumers. Instead, what is increasingly a basic skill is only available to the lucky few, leaving most students behind, particularly students of color and girls.

How is this acceptable? America leads the world in technology. We invented the personal computer, the Internet, e-commerce, social networking, and the smartphone. This is our chance to position the next generation to participate in the new American Dream.

Source: Top business leaders, 27 governors, urge Congress to boost computer science education – The Washington Post

April 26, 2016 at 8:51 am Leave a comment

LaTICE 2017 in Saudi Arabia: Women must cover up

At the end of LaTICE 2016, the Vice-Rector of Al-Baha University in Saudi Arabia (see information here) welcomed attendees to LaTICE 2017. After the presentation about Al-Baha University, Sahana Murthy of IIT-Bombay stood up and asked, “Can I come to LaTICE 2017 dressed as I am right now, in Indian clothes?” The Vice-Rector replied, “No.” All women, including foreigners, will be required to cover their hair at LaTICE 2017.


That exchange was a central topic of conversation for the rest of the conference and in social media for me. I heard some female computing education researchers say that they would attend anyway. Many I heard from expressed outrage. Several were angry that the organizing committee for LaTICE would even place the conference in Saudi Arabia under these restrictions.

I spoke to Neena Thota about LaTICE 2017 (seen below after my keynote).  She was one of the Chairs for LaTICE 2016 (faculty at Uppsala University and University of St. Joseph in Macau) who went to Saudi Arabia in preparation for the conference.  She felt respected there and taken seriously as a scholar, but she did have to cover-up.  Neena doesn’t expect that the rules for women in Saudi Arabia (see the Wikipedia page here about them) will change for a long time.  Do we simply ignore the scholars there and ostracize them, for rules over which they may have no control?  As in Qatar, computer science students in Saudi Arabia are majority female.


The question is no longer rhetorical for me. I was invited to attend the Program Committee meeting at LaTICE 2016 as a non-voting observer, and I have been invited to serve on the PC for LaTICE 2017. I have already had several people warn me that I should not participate. They urged me to shun the conference publicly, in order to send a clear message against the treatment of women in Saudi Arabia.

I’ve been thinking about this, and discussing it with women in my life (my wife, my daughters, and my colleagues).  I’m not female, and I can’t fully understand my own biases as a male, so I sought advice from women in my life and very much appreciate all the comments I received. I’ve decided that I will serve on the LaTICE 2017 program committee.

I understand the reasons of anyone who chooses not to participate.  Those who choose not to review are sending a message that LaTICE should never have gone to a place that restricts the rights of women.  I can understand why women, especially from the West, might choose not to attend. I don’t think foreign women should go there, unless they’re willing to abide by the laws and customs of the place they’re visiting.

Here are my reasons for thinking it worthwhile to engage in LaTICE 2017:

  1. The female Computing students and faculty in Saudi Arabia might not otherwise be able to attend a conference like LaTICE. Unless LaTICE goes there, they do not get the opportunity to hear other perspectives, to share their practices, and to participate in a community of education scholars. By participating in the PC, I get to share what I know about computing education with the community of scholars in Saudi Arabia, both female and male.
  2. As an education researcher, I know that learning and change occurs from active dialogue, not from passive silence. I doubt that I can change much in Saudi Arabia, either by my engagement or my public refusal to engage. This semester our seminar on Learning Sciences and Technologies at Georgia Tech read Paulo Freire’s Pedagogy of the Oppressed. Freire points out that privileged people can’t solve the problems of the less-privileged, nor can the privileged even “help” the less-privileged. All that any of us can do is to create dialogue which creates opportunities for learning for everyone. Freire explicitly includes teachers in that everyone. Teachers ought to aim to learn from students. Dialogue requires engagement.  Reading papers and responding to them with my comments creates dialogue.
  3. Finally, I want to be engaged because of what I will learn. I’m curious. I learned more about India from attending LaTICE 2016 (see the first and second blog posts in this series). I would like to learn more about Saudi Arabia. It makes me a more informed and effective researcher when I am more aware of other contexts.

Neeti Pathak, one of the students with whom I work, pointed out that there is interplay between religion and culture in Saudi Arabia. I also look to my own faith in thinking about LaTICE 2017. Pope Francis, the leading figure in my faith, recently made a proclamation encouraging the Church to be more welcoming, even to those that the Church may have once ostracized (see NYTimes piece). That’s a proclamation that relates to LaTICE 2017. Everyone gains by engaging, even with those whose activities and rules we might not like.

I’m not willing to ostracize a whole country, even if they have rules and customs that I think are wrong. I’m not confident that I understand the issues in Saudi Arabia. I’m not confident that my views on them are more than my Western biases interpreting customs and values I don’t understand. I don’t feel justified in making a statement against LaTICE 2017. I see value in engaging in dialogue.

I shared earlier versions of this post with several colleagues, who are angry with me for the stance I’m taking. These are complicated issues. I am sure that there are many more perspectives that I have not yet considered. I welcome further discussion in the comments, including telling me why I’m wrong.

April 22, 2016 at 7:27 am 19 comments

The Indian Education Context is Completely Different from the US Education Context

At LaTICE 2016, I attended a session on teacher professional development. I work at preparing high school CS teachers. I felt like I’d be able to relate to the professional development work. I was wrong.

One of the large projects presented at LaTICE 2016 was the T10kT project (see link here) whose goal is to use technology to train 10,000 teachers. What I didn’t realize at first was that the focus is on higher-education teachers, not high school teachers. The only high school outreach activity I learned about at LaTICE 2016 was from the second keynote, on an Informatics Olympiad from Madhavan Mukund (see slides here) which is only for a select group of students.

India has 500 universities, and over 42,000 higher education institutions. They have an enormous problem trying to maintain the quality of their higher-education system (see more on the Wikipedia page). They rely heavily on video, because videos can be placed on a CD or USB drive and mailed. The T10kT instructors can’t always rely on Internet access even to higher-education institutions. They can’t expect travel even to regional hubs because many of the faculty can’t travel (due to expense and family obligations).


As can be seen in the slide above, they have a huge number of participants.  I asked at the session, “Why?”  Why would all these higher-education faculty be interested in training to become better teachers?  The answer was that participants get certificates for participating in T10kT, and those certificates do get considered in promotion decisions.  That’s significant, and something I wish we had in the US.

I tried to get a sense for how many primary and secondary schools there are in India, and found estimates ranging from 740K to 1.3M. Compulsory education was only established in 2010 (goes to age 14), and is not well enforced. I heard estimates that about 50% of school-age children go to school because only enrollment is checked, not attendance.

Contrast this with the CS10K effort in the United States. There are about 25-30,000 high schools in the US. Having 10K CS teachers wouldn’t reach every school, but it would make a sizable dent. A goal to get 10K CS teachers in Indian high schools would be laughable. When you increase the number of high schools by two orders of magnitude, 10,000 teachers barely moves the needle. Given the difficulty of access and uncertain Internet, it’s certainly not cheaper to provide professional development in India. They have an enormous shortage of teachers — not just CS. They lack any teachers at all in many schools. The current national focus is on higher-education because the secondary and primary school problems are just so large.

Alan Kay has several times encouraged me to think about how to provide educational technology to support students who do not have access to a teacher. I resisted, because I felt that any educational technology was a poor substitute for a real teacher. Now I realize what a privilege it is to have any teacher at all, and how important it is to think about technology-based guided learning for the majority of students worldwide who do not have access to a teacher.

How do we do it?  How do we design technology-based learning supports for Indian students who may not have access to a teacher?  I attended a session on IITBx, the edX-hosted MOOCS developed by IIT-Bombay. I tweeted:

One of the IIT-Bombay graduate students responded:

Here’s the exchange as a screencap, just in case the Twitter feed doesn’t work right above:


I’m sure that Aditi (whose work was described in the previous blog post) is right. Developers in the US can’t expect to build technologies for India and expect them to work, not without involving Indian learners, teachers, and researchers. One of the themes in my book Learner-Centered Design of Computing Education is that motivation is everything in learning, and motivation is tied tightly to notions of identity, community of practice, and context. I learned that I don’t know much about any of those things for India, nor anywhere else in the developing world. The problems are enormous and worth solving, and US researchers and developers have a lot to offer — as collaborators. In the end, it requires understanding on the ground to get the context and motivation right, and nothing works if you don’t get that right.

April 20, 2016 at 7:22 am 4 comments

Starting to track CS classes in Georgia: Few all-CS teachers

As I noted in my Blog@CACM post about the ECEP Cohort (see post here), some states are starting to track enrollments and sections of CS classes offered. Georgia is one of those, and I got to see the first presentation of these data at a CS Task Force meeting from Dr. Caitlin McMunn Dooley. Slides from the presentation are here.

There are five courses that currently count towards high school graduation in Georgia, and these are the ones being most closely tracked: AP CS Level A, CS Principles, IB CS Year 1, IB CS Year 2, and a Georgia-specific course, Programming Games, Apps, and Society. If you look at the counts of how many teachers are teaching of these course, it looks like good growth. There are just over 440 high schools in Georgia, so if there were one of these teachers in each high school, we could have 25-50% of Georgia high schools with CS teachers. What we don’t know is how many of these teachers are appearing in multiple categories. These are unlikely to be all unique teachers. How many AP CS teachers, for example, are also teaching CS Principles?


The data below were the most surprising to me. Georgia’s state education system is broken into 16 Regional Education Service Agencies (RESAs). We have the counts of the number of teachers of CS classes in each of those 16 RESAs, and we have the count of the number of sections of CS classes offered in each RESA. Notice that the numbers are pretty similar. For the most part, high school CS teachers in Georgia are only teaching one or two sections of CS. We have very few high school teachers who teach CS full-time. There are a few, e.g., some of our teachers who worked with us in “Georgia Computes!” were teaching five sections of CS each day. Most Georgia CS teachers are likely teaching some other discipline most of the time, and offering just a couple sections of CS.


If our goal is for all high school students to have access to CS education, we need to have more than one section of 30-40 students per teacher or per school (which is roughly the same thing right now). We need more teachers offering a section of CS and/or we need each teacher to offer more sections of CS. Right now, too few teachers offer CS to too few students.

I don’t know how common these trends are nationwide. Few states are tracking CS classes yet. Georgia is one of the leading states measuring progress in CS education. We need more information to know what’s going on.

March 31, 2016 at 7:18 am 7 comments

Older Posts

Recent Posts

May 2016
« Apr    


Blog Stats

  • 1,225,344 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 4,206 other followers

CS Teaching Tips


Get every new post delivered to your Inbox.

Join 4,206 other followers