Posts tagged ‘public policy’

States requiring CS for all students may be making a mistake: Responding to unfunded mandates

As of this writing, New Jersey and Wyoming are the latest states to require CS for all their students (as described in this article) or to be offered in all their schools (as described in this Code.org post and this news article), respectively.  Wyoming has a particularly hard hill to climb.  As measured by involvement in AP exams, there’s just not much there — only 8 students took the AP CS A exam in the whole state last year, and 13 took AP CS Principles.

In 2014, I wrote an article titled “The Danger of Requiring Computer Science in K-12 Schools.”  I still stand by the claim that we should not mandate computer science for US schoolchildren yet. We don’t know how to do it, and we’re unlikely to fund it to do it well.

I can’t find any news articles describing what funding New Jersey and Wyoming are going to put toward the goal of teaching CS across their state.  How do you teach every student CS or teach CS in every school without any increase in funding?

Based on what we’ve seen in other US states, I predict one of three things will happen:

  • States will have to loosen the definition of “computer science,” as happened in South Carolina.  90 classes count for the CS requirement in South Carolina, and only 6 of which have programming in them.  Most of them are about keyboarding skills or application software use. If a state doesn’t fund real CS, something else will have to count as real CS.
  • States will rely heavily on virtual high schools and on-line classes to provide CS class “access” without hiring more CS teachers, as we are seeing in several states. That is particularly concerning since recent studies are showing that remedial students do poorly in on-line classes.
  • Independent CS classes will be deemed too expensive. Instead, the mandate to teach CS to all will lead to integration into math and science classes, which are already funded. School will have changed the reform, again (see Papert’s “Why School Reform is Impossible.”)

Neither of the first two options furthers the goal of having high-quality CS education for all students. The third one may be the best position, if funding doesn’t appear.

April 2, 2018 at 7:00 am 24 comments

Teasing out the meaning of “online classes” — Online Courses Are Harming the Students Who Need the Most Help: NYTimes

The NYTimes published an interesting piece on the state of online education today. Increasingly, online education is being used in schools as a response to students failing in face-to-face, traditional classrooms.  If you’re not making it in the regular class, try it again in the online class.  The article describes how that’s not working. Students who fail in traditional classes need more personal contact and support, not less.

I love that the name of the column where this article appeared is called “The Economic View,” because that’s exactly what it is.  We do now how to teach every student well — give each child a well-educated teacher for their particular subject (Bloom’s two-sigma effect). We can’t afford that, so we make do with less.  But we should aim to do no harm.  Current practice with online classes is clearly doing harm.

The NYTimes article is reporting on empiricism.  We cannot empirically determine what might online classes become. The author, Susan Dynarski of the University of Michigan, is reporting on current practice and on the result of policy.  Can online classes help students?  Absolutely, and the OMS CS is a good example of that.  Can we build online classes that work better for students who struggle with traditional classes?  Maybe — it’s hard to see them in this study. At the ECEP 2018 meeting, Caitlin Dooley (Associate Superintendent for Georgia) said that their online classes do better than face-to-face classes, in part because of caring (“mama bear”) teachers who support the students outside of the online classes.  The online classes that Susan Dynarski is studying are clearly not working well for struggling students.  There may already be models that work well, but they’re swamped in a general study of policy across different kinds of online classes.  Dynarski’s article may just be telling us that the current average practice is insufficient. There may be better models (maybe still in research) that could correct these ills.

Dynarski’s article is fascinating and is sounding an important alarm. It should be even greater motivation for those of us who are working to invent better online education.

Online education helps school districts that need to save money make do with fewer teachers. But there is mounting evidence that struggling students suffer.

In the fully online model, on the other hand, a student may never be in the same room with an instructor. This category is the main problem. It is where less proficient students tend to run into trouble. After all, taking a class without a teacher requires high levels of self-motivation, self-regulation and organization. Yet in high schools across the country, students who are struggling in traditional classrooms are increasingly steered into online courses.

Source: Online Courses Are Harming the Students Who Need the Most Help

February 12, 2018 at 7:00 am 2 comments

Education is About Providing Hope to Everyone: Contrasting the Lost Einsteins and Kennett, Missouri

I’ve had two articles bouncing around in my head that offer contrasting views of higher education and for me, of the purpose for computing education.

In “Lost Einsteins: The Innovations We’re Missing,” the NYTimes tells us about unequal access to opportunity in the United States.  We do not have a meritocracy. Our inventors, patent holders, and innovators overwhelmingly are male, white, and upper income. Two children of equal ability do not get the same access to opportunity, if one is poor, female, or from a minority group. That opportunity includes higher education, access to funding, and the social capital of figuring out how to file a patent or produce an invention.

Women, African-Americans, Latinos, Southerners, and low- and middle-income children are far less likely to grow up to become patent holders and inventors. Our society appears to be missing out on most potential inventors from these groups. And these groups together make up most of the American population.  The groups also span the political left and right — a reminder that Americans of different tribes have a common interest in attacking inequality.

In “A Dying Town: Here in a corner of Missouri and across America, the lack of a college education has become a public-health crisis,” the Chronicle of Higher Education tells us the story of Kennett, Missouri, a town with little hope and few college degrees.  Perhaps it’s correlation, but maybe it’s causation. Only one in 10 adults in Kennett, MO has a four-year degree.  The article points out the correlates for attaining a college degree. There are decreased mortality rates with college attendance.

It would be easy to say this is just about being poor, but people who study the phenomenon say it’s not that simple. Yes, having a job — and the paycheck and health insurance that come with it — matters. Those aren’t all that make a difference, however. Better-educated people live in less-polluted areas, trust more in science, and don’t as frequently engage in risky behaviors. Have a college degree and you’re more likely to wear a seat belt and change the batteries in your smoke alarm.

Both of them are sad stories. I’m struck by the differences in the desired goal in each.  In “Lost Einsteins,” we are told about the innovations and inventions we all are missing out on, because access to opportunity (including higher education) is so biased. In “A Dying Town,” we’re told that everyone need access to the opportunity for higher education.  In Kennett, MO, a college degree means hope, and hope means life — literally.

In “Lost Einsteins,” opportunities like higher education are about creating inventors and innovators. In “A Dying Town,” opportunities like higher education are about improving quality and length of life.  Contrast these perspectives as being like coaching a sports champion and providing public health. I made a similar contrast in my book Learner-Centered Design of Computing Education in how we think about computing education.  Many CS teachers are trying to produce innovators, inventors, champions, and Tech heroes — they want their students to go to the great Tech companies, or invent the next must-have app, or start a company that will be worth millions if not billions.  I argue that we have a much greater need to provide everyone with the computing literacy that they need to be successful in the 21st Century.  It is important to coach the champions, but not at the cost of providing the public health that everyone needs.

I’m curious about the relationship between college degrees and the health issues in Kennett, MO.  I have taught undergraduates for over 25 years.  I’ve never taught anyone to wear a seat belt or to change the batteries in their smoke alarms.  Where did they learn that?  Is it just because they’re smarter after they get the degree?  Or were they prone to do those things anyway, because they were the kind that sought out higher education?  I don’t know, but if it’s causal, we have to be careful not to lose those important side benefits of a college degree as we downsize higher education.  As we get rid of the teachers for the MOOCs, and get rid of the campus for virtual space, we might also get rid of whatever intangibles that lead a college graduate to make the right choices in life, like wearing a seat belt and having a long, healthy, and productive life.

February 5, 2018 at 7:00 am Leave a comment

The pushback begins: Who benefits from the push to teach every kid to code?

The pushback was inevitable.  Slate published a piece in December, “Who Benefits From the Push to Teach Every Kid to Code?” The article provides an answer in the subtitle, “Tech companies, for one.”

The article is more history lesson than explicit argument that the driver behind the current effort to promote computing is simply for Tech companies to bolster their bottom line.  It’s still an interesting piece and worth reading.

For some tech companies, this is an explicit goal. In 2016, Oracle and Micron Technology helped write a state education bill in Idaho that read, “It is essential that efforts to increase computer science instruction, kindergarten through career, be driven by the needs of industry and be developed in partnership with industry.” While two lawmakers objected to the corporate influence on the bill, it passed with an overwhelming majority.

Some critics argue that the goal of the coding push is to massively increase the number of programmers on the market, depressing wages and bolstering tech companies’ profit margins. Though there is no concrete evidence to support this claim, the fact remains that only half of college students who majored in science, technology, engineering, or math-related subjects get jobs in their field after graduation. That certainly casts doubt on the idea that there is a “skills gap“ between workers’ abilities and employers’ needs. Concerns about these disparities have helped justify investment in tech education over the past 20 years.

January 26, 2018 at 7:00 am 6 comments

Should computer science fulfill a foreign language admissions requirement?

An Atlanta-area PBS station did an article at the end of last year praising Georgia’s stance allowing CS to count as a foreign language: Is Computer Science A Foreign Language? Ga. Says Yes, Sees Boost In Enrollment | 90.1 FM WABE

The GT director of admissions was interviewed about this requirement in Insider HigherEd and had a much more reasonable take:

Rick Clark, director of undergraduate admissions at Georgia Institute of Technology, said he saw value in the steps by Georgia to encourage more study of computer science in elementary and secondary school.

“I like that kids, even in eighth and ninth grade, who are planning their path through school would take these courses, because basic coding and language will set them up for opportunities upon high school graduation that they would not have otherwise,” Clark said.

In fact, he said his concern is that access to computer science is unequal in Georgia high schools. Most of those who not only take a course, but are able to take Advanced Placement in computer science, are in the metro Atlanta area, Clark said. Georgia Tech is worried about these inequities and is exploring ways to use online instruction to make sure those outside the Atlanta area have access.

At the same time, Clark said, the push for computer science should not be viewed as either/or with foreign languages. He said Georgia Tech is “looking for students who demonstrate that international vision and interest,” and that he finds many of those applicants who are taking AP computer science in high school are also pursuing foreign language instruction as advanced levels.

More than half of Georgia Tech students participate in study abroad, he noted, and 10 percent of undergraduates are from outside the United States. “We are intent upon enrolling students who in high school chose to seek out that global perspective,” he said.

Source: Should computer science fulfill a foreign language admissions requirement?

January 22, 2018 at 7:00 am 3 comments

What universities can do to prepare more Computer Science teachers? Evidence from UTeach

UTeach has published a nice blog post that explains (with graphs!) the ideas that I alluded to in my Blog@CACM post from last month.  While currently CS teacher production is abysmal, UTeach prepared CS teachers tend to stay in their classrooms for more years than I might have expected.  More, there is evidence that suggests that there is significant slice of the CS undergraduate population that would consider becoming teachers if the conditions were right.  There is hope to imagine that we can making produce more CS teachers, if we work from the University side of the equation.  Working from the in-service side is too expensive and not sustainable.

Michael Marder, Professor of Physics and Executive Director of UTeach, and Kim Hughes, Director of the UTeach Institute, write…

The number of computer science and computer science education teachers prepared per year is smaller than for any other STEM subject — even engineering and physics — and while estimates vary, it is safe to say it is on the order of 100 to 200 per year, compared to the thousands of biology or general science teachers prepared. 

The U.S. has around 24,000 public and 10,000 private high schools. Only 10% to 25% have been offering computer science, so to provide all of them with at least one teacher at the current rate simply looks impossible.

Source: What universities can do to prepare more Computer Science teachers

January 5, 2018 at 7:00 am Leave a comment

Require CS at University in order to Get CS into K-12 (Revisited)

I wrote a blog post in Blog@CACM in 2011: If You Want High School CS, Require Undergraduate CS.  Everything we’ve seen since then makes me more convinced this is a viable path to providing high-quality CS education for every student.

There is a growing body of evidence that every student at University will need computing. The recent report from Burning Glass and Oracle Academy shows how much in demand CS skills are, far beyond just those who will be professional software developers. Teaching everyone about computing would help in addressing Cathy O’Neill’s calls for more people to be investigating the algorithms controlling our lives. The argument for why University involvement is necessary for K12 CS Ed is based on an observation made recently by Code.org: We are not producing enough CS teachers in University. If everyone took CS at University, that would also reach pre-service teachers. That would make it easier for those teachers to teach CS in the future.

Requiring CS at University may help with the bigger cultural and perception problem.  In England, we see that schools aren’t offering CS even if it’s part of the required curriculum, and students (especially females) aren’t taking it (see the Royal Society report from last month).  The problem is that we’re trying to shoehorn CS into a culture that isn’t asking for it, or rather, the students (and schools) don’t perceive a need for CS. This is a form of the same problem that came up when we were talking about getting more formal methods into software development practice. All professionals should understand the role of computing in our society and how to use computing as a literacy: To express ideas, to share ideas, and to use in developing ideas.

Schools follow society. Society is rarely (if ever) changed by schooling. If you want a computationally literate society, convince the adults. If most professionals use computing, the same professionals that students want to be like, then there is a social reason to learn computing. Social demand to prepare K-12 students in that literacy makes it more likely for that literacy to succeed in K-12 education.  Trying to teach all students something that society doesn’t value for everyone is counter to situated learning theory.  Students (even K-12 students) are engaged in legitimate peripheral participation — their “job” is to figure out what is expected of them in society. If they don’t see computational literacy broadly in society, students don’t get the message that it’s important for everyone to learn.

When I make this suggestion to University faculty, I often hear the argument, “Anything you require of students, they will hate.” Then they tell me an anecdote of some student who hated a requirement, or of some personal experience of a class they hated. I know of no empirical evidence that says that this is generally true. We do have empirical evidence that says it’s false. Mike Hewner’s work found that US students take required classes in order to discover what they like, and they make curricular choices based on what they like.

We are already seeing students from all over campus flooding into our classes (see the Generation CS report and the National Academies report). We are already learning how to manage the load. It’s already happening in some Universities that most or all students at University are taking CS. Why not require it so that we get the Education students who we may not be seeing yet in CS classes?

Instead of using Universities to make CS education work, we are pouring money into CS Ed via in-service professional development — a tenfold increase in England, and $1.5B in the next five years in the US.  In general, more money in education alone doesn’t change things. We have to think about systems, policies, and our educational ecosystem. Universities are part of that educational ecosystem.

Universities play a role in K-12 education in all other subjects. We have to involve them in order to create sustainable K-12 Computer Science education.

December 15, 2017 at 7:00 am Leave a comment

Older Posts


Recent Posts

April 2018
M T W T F S S
« Mar    
 1
2345678
9101112131415
16171819202122
23242526272829
30  

Feeds

Blog Stats

  • 1,499,661 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 5,249 other followers

CS Teaching Tips