Posts tagged ‘self-efficacy’

ICER 2021 Preview: The Challenges of Validated Assessments, Developing Rich Conceptualizations, and Understanding Interest #icer2021

The International Computing Education Research Conference (ICER) 2021 is this week (website here). It should have been in Charleston, South Carolina (one of my favorite cities), but it will instead be all on-line. Unlike previous years, if you are not already registered, you’re unfortunately out of luck. As seen in Matthias Hauswirth’s terrific guest blog post from last week (see here), getting set up in Clowdr is complicated. ICER won’t have the resources to bring people on-line and get them through the half hour prep sessions on-the-fly. There will be no “onsite” registration.

However, all the papers should be available in the ACM Digital Library (free for some time), and I think all the videos of the talks will be made available after the fact, so you can still gain a lot from the conference. Let me point out a few of the highlights that I’m excited about. (As of this writing, the papers are not yet appearing in the ACM DL — all the DOI links are failing for me. I’ll include the links here in hopes that everything is fixed soon.)

Our keynoter is Tammy Clegg, whom I got to know when she was a PhD student at Georgia Tech. She’s now at U. Maryland doing amazing work around computation and relevant science learning. I’m so looking forward to hearing what she has to say to the ICER community.

Miranda Parker, Allison Elliott Tew, and I have a paper “Uses, Revisions, and the Future of Validated Assessments in Computing Education: A Case Study of the FCS1 and SCS1.” This is a paper that we planned to write when Miranda first developed the SCS1 (first published in 2016). We created the SCS1 in order to send it out to the world for use in research. We hoped that we could sometime later do in CS what Richard Hake did in Physics, when he used the FCI to make some strong statements about teaching practices with a pool of 6,000 students (see paper here). Hake’s paper had a huge impact, as it started making the case to shift from lecture to active learning. Could we use the collected use of the SCS1 to make some strong arguments for improving CS learning? We decided that we couldn’t. The FCI was used in pretty comparable situations, and it’s tightly focused on force. CS1 is far too broad, and FCS1 and SCS1 are being used in so many different places — not all of which it’s been validated for. Our retrospective paper is kind of a systemic literature review, but it’s done from the perspective of tracing these two instruments and how they’ve been used by the research community.

One of the papers that I got a sneak peek at was “When Wrong is Right: The Instructional Power of Multiple Conceptions” by Lauren Margulieux, Paul Denny, Katie Cunningham, Mike Deutsch, and Ben Shapiro. The paper is exploring the tensions between direct instruction and more student-directed approaches (like constructionism and inquiry learning) (see a piece I did in 2015 about these tensions). The basic argument of this new paper is that just telling students the right answer is not enough to develop rich understanding. We have to figure out how to help students to be able to hold and compare multiple conceptions (not all of which is canonical or held by experts), so that they can compare and contrast, and use the right one at the right time.

I’m chair for a session on interest. While I haven’t seen the papers yet, I got to watch the presentations (which are already loaded in Clowdr). “Children’s Implicit and Explicit Stereotypes on the Gender, Social Skills, and Interests of a Computer Scientist” by de Wit, Hermans, and Aivaloglou is a report on a really interesting experiment. They look at how kids associate gender with activities (e.g., are boys more connected to video games than girls?). The innovative part is that they asked the questions and timed the answers. A quick answer likely connects to implicit beliefs. If they take a long time to answer, maybe they told you what they thought you wanted to hear? The second paper “All the Pieces Matter: The Relationship of Momentary Self-efficacy and Affective Experiences with CS1 Achievement and Interest in Computing” by Lishinski and Rosenberg asks about what leads to students succeeding and wanting to continue in computing. They look at students affective state coming into CS1 (e..g, how much do they like computing? How much do they think that they can succeed in computing?), and relate that to students’ experiences and affective state after the class. They make some interesting claims about gender — that gender gaps are really self-efficacy gaps.

One of the more unusual sessions is a pair of papers from IT University of Copenhagen that make up a whole session. ICER doesn’t often give over a whole session to a single research group on multiple papers. One is “Computing Educational Activities Involving People Rather Than Things Appeal More to Women (Recruitment Perspective)” and the other is “Computing Educational Activities Involving People Rather Than Things Appeal More to Women (CS1 Appeal Perspective).” The pitch is that framing CS1 as being about people rather than things leads to better recruitment (first paper) and more success in CS1 (second paper) in terms of gender diversity. It’s empirical support for a hypothesis that we’ve heard before, and the authors frame the direction succinctly: “CS is about people not things.” Is that succinct enough to get CS faculty to adopt this and teach CS differently?

August 16, 2021 at 7:00 am Leave a comment

The goal of the first CS course should be to promote confidence if we’re going to increase diversity in CS: Paying off on a bet

This should be a thing: If you make a public bet on Twitter, and lose, you should have to write a blog post explaining how you got it wrong.

Let me set the stage for the bet. There are studies suggesting that the Advanced Placement (AP) Computer Science A exam has a significantly different impact on students’ majors than other AP exams. (For non-US readers: AP tests provide an opportunity for secondary school students to earn post-secondary school credit.) AP CS A exam-takers are more likely to go on to take more CS courses or become a CS major — more likely than, say, students taking AP Calculus or AP US History exams to become mathematics or history majors. But does that extend to the newer AP CS exam, AP CS Principles? AP CS Principles was designed to be less about the kinds of programming that CS majors do in their first year, and more about a broader understanding of computing and its effects (see College Board site here). There were several of us talking about this in the Spring. On April 1, 2019, I tweeted to Jeff Forbes (see link): “I bet that AP CS Principles has no impact on CS or STEM majors. It’s such a different course (eg doesn’t map to CS courses on most campuses).” He took that bet, and he was right. A study released by the College Board shows that there is a causal relationship between taking AP CS Principles and majoring in CS in undergraduate (see report link here). The impact is large. Overall, students who take AP CS Principles are three times more likely to major in computer science in college. AP CSP students who are female are twice as likely to major in CS.

I wasn’t crazy for expecting that AP CS Principles would not have such a big impact on recruitment and retention. At SIGCSE 2020, Joanna Goode and co-authors published a paper showing that (see blog post link here) AP CS Principles is effectively recruiting much more diverse students than the AP CS A course (which is mostly focused on Java programming). But, AP CS A students end up with more confidence in computing and much more interest in computing majors and tech careers. ACM TOCE in 2019 published a paper using NCWIT Aspirations award winners (see blog post link here) showing that taking the CS Advanced Placement A exam was one of the best predictors of persistence three years after the high school survey in both CS and other technology-related majors. The TOCE paper authors made a particular emphasis on the importance of programming: “It seems that involvement in general tech-related fields other than programming in high school does not transfer to entering and persisting in computer science in college for the girls in our sample.”

So I had good reason to believe that non-programming-intensive courses might not have a big impact on recruitment into the CS major and retention. But I accept the evidence that I was wrong. What else is going on?

Here’s another recent piece of evidence that supports Jeff’s belief that AP CS Principles (and classes like that) could be having a big impact. Philip Boda and Steve McGee have a paper coming out in SIGCSE 2021 showing that the Exploring CS course (see website here) is having a significant impact in driving up AP CS A participation and diversity (see paper here), which continues to have a large impact on majoring in CS. Exploring CS, like AP CS Principles, is de-emphasizes programming in favor of a broader understanding of computing and helping students to see themselves as successful at CS.

Neither of these papers offers an explanation for why AP CSP or ECS is having this positive impact. They’re both large scale quantitative stories. You’d think that I might have learned my lesson from this last failed bet. Nah. I’ve got guesses. My guesses might be wrong, as they were in this case. I’m a post-positivist. I don’t think we’ll ever get to the place where we know the complete truth, but we should keep trying, keeping making hypotheses, and we can keep getting closer.

Here’s my hypothesis for what’s going on, stated as a prediction:

A first course will be successful at promoting recruitment into CS as a major or career and at retaining students in CS if it increases students self-efficacy about programming tasks.

The critical part is for students to increase their confidence that they can be successful at programming tasks. AP CS A easily does this, which is why it has such great results in recruitment and retention. Not all classes or experiences do, as the NCWIT study suggests. AP CS Principles and ExploringCS are all about increasing student confidence, helping them to see themselves as successful at computing. I don’t know how little programming a student needs to do to increase their self-efficacy. Maybe it’s enough to see programs and what programming is about.

Recent research in computing education has been focusing on self-efficacy as one of the most important variables predicting student recruitment and retention in CS. Alex Lishinski and his co-authors showed that self-efficacy had different relationships for female and male CS students (see paper link here) and that programming projects influenced students’ sense of self-efficacy, which in turn influenced performance in the CS class (see paper link here). Jamie Gorson and Nell O’Rourke found (in an ICER 2020 paper that I blogged about here) that CS students had deflated self-efficacy, in part, because they had unreasonable expectations of what real programmers do. Dr. Katie Cunningham, soon to be a post-doc joining Nell’s lab, showed in her dissertation how students simply give up on programming tasks that they don’t think that they’ll be successful at (see blog post on Katie’s dissertation defense). Self-efficacy is likely an important variable in recruitment and retention, particularly of female students, and it’s one that we can manipulate with better designed education.

I’m not the first person to to suggest this relationship. In a study with over 5 million participants, Peter Kemp and colleagues suggest that female participation in secondary school computer science in England is being negatively impacted because of female students’ low self-efficacy in CS — and that this is because of the CS classes (see paper link here). In England, curriculum in Information and Communications Technology is being faded out in favor of a Computer Science focus. They write in their paper “Female Performance and Participation in Computer Science: A National Picture”:

The move to introduce CS into the English curriculum and the removal of the ICT qualifications look to be having a negative impact on female participation and attainment in computing. Using the theory of self-efficacy, we argue that the shift towards CS might decrease the number of girls choosing further computing qualifications or pursuing computing as a career. Computing curriculum designers and teachers need to carefully consider the inclusive nature of their computing courses.

I made my bet because I thought that the programming-light focus of AP CS Principles (or even ExploringCS) would have less of an impact on CS recruitment and retention than the programming-intensive focus of AP CS A. I now believe I was wrong. I would now bet that the amount of programming probably isn’t the critical variable at all. It’s whether students come out of these courses saying, “I can do this. I can program.” That’s the critical variable for recruitment and retention that I believe AP CS Principles and Exploring CS are influencing successfully.

December 29, 2020 at 7:00 am 25 comments

Openness is influenced by cognitive abilities: Self-efficacy too?

Interesting finding that supporting older adults learning better problem-solving skills seems to lead to a change in a personality trait called “openness.”  I find this interesting for two reasons.  First, it’s wonderful to see continuing evidence about the plasticity of the human mind.  Surprisingly little is “fixed” or “innate.”  Second, I wonder how “openness” relates to “self-efficacy.”  We heard at ICER 2011 how self-efficacy plays a significant role in student ability to succeed in introductory computing.  Is there an implication here that if we could improve students’ understanding of computer science, before programming, that we could enhance their openness or self-efficacy, possibly leading to more success?  That’s a related hypothesis to what we aim for in CSLearning4U (that studying programming in the small, worksheet-style, will make programming sessions more effective — more learning, less time, less pain), and I’d love to see more evidence for this.

Personality psychologists describe openness as one of five major personality traits. Studies suggest that the other four traits (agreeableness, conscientiousness, neuroticism and extraversion) operate independently of a person’s cognitive abilities. But openness — being flexible and creative, embracing new ideas and taking on challenging intellectual or cultural pursuits — does appear to be correlated with cognitive abilities.

via Enhancing cognition in older adults also changes personality.

January 30, 2012 at 9:20 am 3 comments


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 9,005 other followers

Feeds

Recent Posts

Blog Stats

  • 1,880,332 hits
October 2021
M T W T F S S
 123
45678910
11121314151617
18192021222324
25262728293031

CS Teaching Tips