Posts tagged ‘undergraduate enrollment’

Could our CS enrollment boom and bust cycle be the result of inability to manage the boom?

I wrote my Blog@CACM post for January on the rising enrollment in computer science and how that is making irrelevant our advances in retaining students (see article here). Retention is simply not the problem in US CS programs today.

But thinking about the 1980’s and today (as described in this blog post), I began wondering if our boom-and-bust cycles might be related to our inability to manage the boom.

  • First, we get a huge increase in enrollment due to some external factor (like the introduction of the personal computer).
  • Then, we have to manage the rise in enrollment. We try to hire faculty, but we can’t bring them in fast enough. We stop worrying about high-quality, high-retention education — we need the opposite! We set up barriers and GPA requirements.
  • Word gets out: CS is hard. The classes are too difficult. It’s too competitive. Minority group students suffer from the imposter phenomenon and leave faster than majority students.
  • Result: Enrollment drops. Diversity decreases.
  • Then the next external factor happens (like the invention of the graphical Web browser), and we start the sequence again.

If we could give everyone a seat who wanted one, and we continued to focus on retention and high-quality education, might we actually have a steady-state of a large CS class? Could our inability to manage the load actually be causing the bust side of the cycle?

February 4, 2015 at 7:36 am 6 comments

Trends in CS Enrollments at Small, Liberal Arts Colleges

Great to see some data on what’s going on at smaller schools, not just in the doctoral-granting institutions.  On average, as much of an upswing as what’s reported in the Taulbee, but not all schools reporting increases.  Interesting analyses of what’s working and what’s not.

What contributes to the program’s success? Faculty involvement, quality teaching, and enthusiasm for undergraduate research. Flexibility with prerequisites and independent studies. Outreach. Interdisciplinary projects. Growing knowledge/visibility about CS and its broad usefulness, including awareness among faculty colleagues. The job market. Multiple introductory courses/sections. Inclusion in general distribution requirements. Becoming a separate department. Stable set of faculty. Students choosing first-semester courses themselves.


Decline?  External forces/national trends. Not enough faculty to offer enough spaces in lower level courses. Faculty turnover. Student rumor mill (regarding a potential cut).

via Trends in CS Enrollments at Small, Liberal Arts Colleges (BoF Survey Results) – Google Drive.

April 4, 2013 at 1:44 am 1 comment

Computer science enrollments soared last year, rising 30% – Computerworld

The growth of departments in the Taulbee report is astonishing, but what Computerworld got wrong is calling it “computer science enrollments,” as opposed to “computer science enrollments in PhD-granting institutions.”  The Taulbee report doesn’t cover all CS departments, and that’s why the new NDC survey has been launched.

The Taulbee report also indicates that the percent of women graduating with a Bachelors in CS has risen slightly, while the Computer Engineering percentage has dropped.  Both are well south of 15%, though — a depressingly small percentage.

The number of new undergraduate computing majors in U.S. computer science departments increased more than 29% last year, a pace called “astonishing” by the Computing Research Association.

The increase was the fifth straight annual computer science enrollment gain, according to the CRA’s annual surveyof computer science departments at Ph.D.-granting institutions.

via Computer science enrollments soared last year, rising 30% – Computerworld.

March 18, 2013 at 1:39 am 1 comment

Connecticut aims to grow STEM enrollment

Interesting model.  To be effective, I’d suggest hiring the STEM faculty with an eye toward STEM education.  Hire faculty who want to make improving the quality and retention of STEM graduates, not just more STEM researchers.  Make it count.

Connecticut Governor Dannel Malloy announced Thursday a plan to dedicate $1.5 billion to growing the science, technology, engineering, and math programs at the University of Connecticut. The money will be used to hire more faculty members, enroll more students, build new STEM facilities and dorms, and create new doctoral fellowships and a STEM honors program.

The proposal, called Next Generation Connecticut, spans UConn’s three campuses. If the program passes the state legislature, it would increase the number of engineering undergraduates enrolled by 70 percent and the number of STEM graduates by 47 percent. UConn currently enrolls 7,701 undergraduates and 1,973 graduate students in STEM fields. It would also fund the hiring of 259 new faculty members, 200 of whom would be in the STEM fields.

“It’s transformational,” said UConn President Susan Herbst. “It’s really every president’s hope that they get this kind of investment from their state or from their donors.”

via Connecticut and Texas aim to grow STEM enrollment, but take different approaches | Inside Higher Ed.

February 27, 2013 at 1:25 am Leave a comment

The future of the university with MOOCs: It’s all about the individual

Interesting piece in Inside HigherEd which argues that the real impact of MOOCs on the University is to get the University out of the business of engaging students and working to improve completion, retention, and graduation rates.  Nobody gets into the University until proven by MOOC.  And since so few people complete the MOOCs, the percentage of the population with degrees may plummet.

Constructing this future will take some time, but not much time.  It only requires the adaptation of various existing mechanisms for providing proctored exams worldwide and a revenue and expense model that allows all the providers (university and faculty content providers, MOOC middleware providers, and quality control providers) to establish profitable fee structures.  In this model, the risk and cost of student engagement is borne by the students alone.  The university assumes no responsibility for student success other than identifying quality courses.  The MOOC middleware companies create and offer the content through sophisticated Internet platforms available to everyone but make no representations about the likelihood of student achievement.  Indeed, many student participants may seek only participation not completion. The quality control enterprise operates on a fee-for-service basis that operates without much concern for the number of students that pass or fail the various proctored tests of content acquisition, and many participants in MOOC activities may not want to engage the quality control system.

via MOOCs and the Future of the University | Inside Higher Ed.

January 28, 2013 at 1:18 am 6 comments

SAT is less predictive for females?

I’d not heard this claim before, seen below in an interesting USA Today piece on trying to get more women into STEM fields.  Is it really the case that math SAT scores are not as predictive for females as males?  I found one study about SAT predictive power, but it doesn’t seem to say that SAT is less predictive for women.  I found other pieces complaining about the predictive power for SAT, but I didn’t see anything about the role of gender.

Not to be ignored is the school’s decision in 2007 to make SAT scores optional in admissions. Tichenor says math SAT scores were not accurately predicting the success of its female students. Historically, average math SAT scores for women have been lower than those for men.

Celina Dopart, who graduated this spring from Worcester Polytechnic with a degree in aerospace engineering and is headed to the Massachusetts Institute of Technology this fall for graduate work, says she submitted her scores, but liked the message sent by the test-optional policy.

via Math and science fields battle persistent gender gap – USATODAY.com.

September 12, 2012 at 5:39 am 10 comments

Claim: Mr. President, there is no engineer shortage, at least compared to China

Interesting response to President Obama’s call for creating many more engineers, which has started from the claim that we’re not being competitive with China’s production of engineers. This article from the Washington Post suggests that there isn’t a shortage of engineers at all in the US. It feels like the problem of determining whether or not we have enough CS enrollment — what’s “enough”?

What’s more, China’s tally of 350,000 was suspect because China’s definition of “engineering” was not consistent with that of U.S. educators. Some “engineers” were auto mechanics or technicians, for example. We didn’t dispute that China was and is dramatically increasing its output of what it calls engineers. This year, China will graduate more than 1 million (and India, close to 500,000). But the skills of these engineers are so poor that comparisons don’t make sense. We predicted that Chinese engineers would face unemployment. Indeed, media reports have confirmed that the majority of Chinese engineers don’t take engineering jobs but become bureaucrats or factory workers.

Then there is the question of whether there is a shortage of engineers in the United States. Salaries are the best indicator of shortages. In most engineering professions, salaries have not increased more than inflation over the past two decades. But in some specialized fields of software engineering in Silicon Valley and in professions such as petroleum engineering, there have been huge spikes. The short answer is that there are shortages in specific fields and in specific regions, but not overall. Graduating more of the wrong types of engineers is likely to increase unemployment rather than create jobs.

via President Obama, there is no engineer shortage – The Washington Post.

December 26, 2011 at 9:47 am 6 comments

Older Posts


Recent Posts

September 2015
M T W T F S S
« Aug    
 123456
78910111213
14151617181920
21222324252627
282930  

Feeds

Blog Stats

  • 1,108,291 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 3,644 other followers

CS Teaching Tips


Follow

Get every new post delivered to your Inbox.

Join 3,644 other followers