Posts tagged ‘women in computing’

Why Tech Leadership May Have a Bigger Race Than Gender Problem

The Wired article linked below suggests that race is an even bigger issue than gender in Tech industry leadership.  While Asians are over-represented in the Tech labor force, they are under-represented in Tech leadership, even more than women.  I was somewhat surprised that this article considers “Asians” so generally.  The most-often visited blog post I’ve written is the one that shows the differential success rates of different Asian populations in US educational attainment (see post here).

Gee says this study came about because an earlier report in 2015 that used EEOC data from companies like Google and LinkedIn ended up on the desk of Jenny Yang, the outgoing commissioner of the EEOC. Yang asked if the lower proportion of Asian executives was the result of discrimination and might be applicable for lawsuits, Gee says. He told her no. “We have never seen any overt discrimination or policies that create these disparities,” Gee explains. Rather, after conversations with 60 or 70 Asian executives, the authors say they noticed a pattern of cultural traits among some Asians that did not align with leadership expectations in Western corporate culture, such as risk-taking and being confrontational.

Gee gave the example of an executive who started the first Asian affinity group at Intel decades ago. He noticed that Chinese engineers were unhappy and not succeeding in Intel’s culture of “constructive conflict,” which involved heated debates during meetings.

“Some people call it unconscious bias. For Asians, it’s actually a very conscious bias,” says Gee. Studies show that assumptions that Asians are good at math, science, and technology make it easier for them to get in the door, but the same bias is reversed when it comes to leadership roles, he says.

Source: Why Tech Leadership May Have a Bigger Race Than Gender Problem | WIRED

October 23, 2017 at 7:00 am 1 comment

Study says multiple factors work together to drive women away from STEM

I wrote recently in a blog post that we don’t know enough why women aren’t going into computing, and I wrote in another blog post that CRA is finding that we lose women over the years of an undergraduate degree in CS.  Here’s an interesting study offering explanations for why we are not getting and keeping women:

The study analyzed a large, private university on the East Coast, using data from 2009-16, broken down semester-by-semester to track students’ changes in grades and majors in as close to real time as possible. While other studies have suggested that women came out of high school less prepared, or that increasing female STEM faculty could help provide women mentors, the Georgetown study didn’t support those findings.

“Women faculty don’t seem to attract more women into a field, and that was sort of sad news for us,” Kugler said. “We were hoping we could make more of a difference.”

One of the reasons women might feel undue pressure in STEM fields might actually be because of how recruiting and mentoring is framed. Many times, those efforts actually end up reinforcing the idea that STEM is for men.“Society keeps telling us that STEM fields are masculine fields, that we need to increase the participation of women in STEM fields, but that kind of sends a signal that it’s not a field for women, and it kind of works against keeping women in these fields,” Kugler said.

And while many STEM majors are male-dominated, the framing of recruitment and mentorship efforts can sometimes paint inaccurate pictures for STEM fields that aren’t male-dominated, and contribute to an inaccurate picture for STEM as a whole, the paper says:

While men may not have a natural ability advantage in STEM fields, the numerous government and other policy initiatives designed to get women interested in STEM fields may have the unintended effect of signaling to women an inherent lack of fit.

While computer science, biophysics and physics tend to be male-dominated, Kugler said, neurobiology, environmental biology and biology of global health tend to be female-dominated.

Source: Study says multiple factors work together to drive women away from STEM

October 13, 2017 at 7:00 am 1 comment

The state of women in computer science: An investigative report, featuring Barbara Ericson

The new TechRepublic report on women in computing is short but touches on a lot of important themes. Barb Ericson figures prominently in the report.

At Georgia Tech, every student is required to take one of three computer science intro courses: One for engineering majors, one for computer science majors, and one for all other students.

In the past, computer science was not taught in a very interesting way, Ericson said. And getting professors to change their habits after so much time proved difficult, she added.

Further, “a lot of instructors believe in the ‘geek gene’—that you’re born to do it or you’re not, and they often think women are not,” Ericson said. “Women can face an uphill climb from some of their professors or friends or family who are like, ‘Wait, what? Why are you doing this?'”

Intro courses should be interesting, creative, and social, and offer plenty of help, especially for women who tend to come in with less experience and less confidence, Ericson said.

Source: The state of women in computer science: An investigative report – TechRepublic

October 11, 2017 at 7:00 am Leave a comment

The challenge of retaining women in computing: The 2016 Taulbee Survey: Supplementary Report on Course-level Enrollment

The Computing Research Association (CRA) has just released a supplement to their 2016 Taulbee Survey report.  They now are collecting individual course data, which gives them more fine-grained numbers about who is entering the major, who is retained until mid-level, and who makes it to the upper-level.  Previously, they mostly just had enrollment and graduation data.  These new data give them new insights.  For example, we are getting more women and URM in computing, but we are not retaining them all.

Except in the introductory course for non-majors, the median percentage of women in courses at each level was either fairly constant or increasing [from previous years]. The most notable increase was in the mid-level course, where the median percentage of women went from 17.4 in 2015 to 20.0 in 2016. The median percentage of women in the upper-level course also increased, from 14.1 to 15.9 percent. We see a slight drop-off from the median percentage of women in the introductory course for majors in 2015 (21.0 percent) to the median percentage of women in the mid-level course in 2016 (20.0 percent), and a somewhat larger drop-off between the median percentage of women in the mid-level course in 2015 (17.4 percent) and the median percentage of women in the upper-level course in 2016 (15.9 percent).  Because the median percentage at each level is for a single representative course, not for all students at that level, some of the differences between levels may be attributable to the specific courses on which the institutions chose to report. Overall, however, this trend of decreasing representation of women at higher course levels is congruent with other data.

Source: The 2016 Taulbee Survey: Supplementary Report on Course-level Enrollment – CRA

September 18, 2017 at 7:00 am 4 comments

British girls “logging off” from CS: What’s the real problem?

The BBC reports (in the article linked below) that the “revolution in computing education has stalled.”  The data from England (including the Roehampton Report, discussed in this blog post) do back up that claim — see the quotes at the bottom.

In this post, I’m reflecting on the response from the British Computer Society. “We need to do more with the curriculum to show it’s not just a nerdy boys’ subject. We’ve got to show them it’s about real problems like climate change and improving healthcare.”  There are some interesting assumptions and warrants in these statements.  Do girls avoid CS because they think it’s a boys’ subject, or because it’s not about real problems?  How does the curriculum “show” that it is (or isn’t) a “nerdy boys’ subject”?  If the curriculum emphasized “real problems,” would it no longer be a “nerdy boys’ subject”?  Are these at all connected? Would making CS be like “climate change and improving healthcare” attract more female students?

First, I’d like to know if the girls choosing ICT over CS are actually saying that it’s because CS is “a nerdy boys’ subject,” and if the girls know anything about the curriculum in CS.  In our research, we found that high school students know very little about what actually happens in undergraduate CS, and undergraduate students in CS don’t even know what’s in their next semester’s classes. Changing the curriculum doesn’t do much good if the girls’ decisions are being made without knowing about the curriculum.  The former claim, that CS is perceived by girls as a “nerdy boys’ subject,” is well-supported in the literature.  But is that the main reason why the girls aren’t enrolling?

Do we know that this a curriculum issue at all? The evidence suggests that there are other likely reasons.

  • Maybe it’s not the curriculum’s “problem” focus, but the “learning objective” focus. Do the girls percieve that the point of the course is to become part of the Tech industry as a professional programmer?  Maybe girls are more interested in broadening their potential careers and not limiting their options to IT?  ICT can be used anywhere.  CS might be perceived as being about being a software developer.
  • Are the girls seeing mass media depictions of programming and deciding that it’s not for them?  A 2016 ICER paper by Colleen Lewis, Ruth Anderson, and Ken Yasuhara explored the reasons why students might not feel that they have a good “fit” with CS (see ACM paper link here).  But are those the reasons why women might not even try CS? Maybe they have had experiences with programming and decided that they didn’t fit? Or maybe the decided that syntax errors and unit tests are just tedious and boring?
  • Are the girls seeing mass media depictions of the Tech industry and deciding that they’d rather not be a Googler or work at Uber? They are probably hearing about things like the Damore memo at Google. Whether they think he’s right or not, maybe girls are saying that they just don’t want to bother.
  • Do the girls have more choices, and CS is simply less attractive in comparison?  It may be that girls know that CS is about solving real problems, but they’d rather solve real problems in law, medicine, or business.
  • Do the girls perceive that wages are not rising in the Tech industry?  Or do the girls perceive that they can make more money (perhaps with fewer negative connotations) as a lawyer, doctor, or businessperson?

I have heard from some colleagues in England that the real problem is a lack of teachers.  I can believe that having too few teachers does contribute to the problem, but that raises the same questions at another level.  Why don’t teachers teach computer science?  Is it because they don’t want to be in the position of being “vocational education,” simply preparing software developers?  Or are teachers deciding that they are dis-interested in software development, for themselves or for their students?  Or are the teachers looking at other areas of critical need for teachers and decide that CS is less attractive?

Bottom line is that we know too little, in the UK or in the US (see Generation CS), about what is influencing student and teacher decisions to pursue or to avoid classes in computing. The reality doesn’t matter here — people make decisions based on their perceptions.

In England, entries for the new computer science GCSE, which is supposed to replace ICT, rose modestly from 60,521 in 2016 to 64,159 this year. Girls accounted for just 20% of entries, and the proportion was a tiny bit lower than last year.

ICT entries fell from 84,120 to 73,099, which you would expect as the subject is disappearing from the national curriculum. But it had proved more attractive to girls. Even there, the proportion of female entries fell from 41% to 39%.

Combine the two subjects, and you find that the number studying either subject has fallen by over 7,000 in the past year. Back in 2015 more than 47,000 girls were getting some kind of computing qualification, and that has fallen to about 41,000 – just 30% of the total.

Source: Computer science: Girls logging off – BBC News

September 15, 2017 at 7:00 am 9 comments

The factors influencing students choosing to go into STEM: Economics and gender matter

I saw this in a College Board report, which summarized the paper cited below with these bullets:

  • For both genders, academics played a large part in major choice—passing grades in calculus, quantitative test scores, and years of mathematics in high school were notable.
  • Also important to both young men and women was a student’s own view of his or her quantitative/mathematical abilities.
  • Key drivers in decision making differed between genders. First-generation status correlated with young men being more likely to major in engineering, while a low-income background was associated with young women majoring in scientific fields.

Based on the findings presented here, first generation status leads to a greater likelihood of choosing engineering careers for males but not for females. Financial difficulties have a greater effect on selecting scientific fields than engineering fields by females. The opposite is true for males. Passing grades in calculus, quantitative test scores, and years of mathematics in high school as well as self-ratings of abilities to analyze quantitative problems and to use computing are positively associated with choice of engineering fields.

Source: Choice of Academic Major at a Public Research University: The Role of Gender and Self-Efficacy | SpringerLink

July 31, 2017 at 7:00 am 2 comments

Helping students succeed in AP CS: GT Computing Undergraduate Female Rising Up to Challenge in CS

There’s a common refrain heard at “CS for All” and BPC events in the US these days. “AP CS A is just terrible. AP CS Principles will fix everything.” The reality is that there are bad AP CS A classes, and there are good ones. There is evidence that just having good curricula doesn’t get you more and more diverse students. The more important reality is that AP CS A accurately matches most introductory computer science classes in the United States. If you want students to succeed at the CS classes that are in our Universities today, AP CS A is the game to play at high school.

That’s why Barbara’s Rise Up programs are so important. She’s helping female and African-American students succeed in the CS that’s in their schools and on University campuses today. And she’s having tremendous success, as seen in the story below about a female high school football player who is now a CS undergraduate.

Barbara’s work is smart, because she’s working with the existing CS infrastructure and curricula. She’s helping students to succeed at this game, through a process of tutoring and near-peer mentoring. This is a strategy to get more female CS undergraduates.

That’s when she discovered Sisters Rise Up 4 CS, a relatively new program developed in Fall 2014 at Georgia Tech by Barbara Ericson. The program was based on Project Rise Up 4 CS, which aims to help African-American students pass the AP Computer Science A exam. Sisters Rise Up does the same for females.The program offers extra help sessions in the form of webinars and in-person help sessions, near-peer role models, exposure to a college campus, and a community of learners.“The program helped me get hooked on computer science,” Seibel said. “I started to actually learn. Seeing that some of the girls in the program had interned at Google or other places like that, and that they really loved CS, it gets you excited about it. They were only a few years older than me, and I was like, ‘Oh. That could be me.’”

Source: GT Computing Undergraduate Sabrina Seibel Rising Up to Challenge in CS | College of Computing

July 26, 2017 at 9:00 am 1 comment

Older Posts


Recent Posts

December 2017
M T W T F S S
« Nov    
 123
45678910
11121314151617
18192021222324
25262728293031

Feeds

Blog Stats

  • 1,460,720 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 5,193 other followers

CS Teaching Tips