Posts tagged ‘women in computing’

The challenge of retaining women in computing: The 2016 Taulbee Survey: Supplementary Report on Course-level Enrollment

The Computing Research Association (CRA) has just released a supplement to their 2016 Taulbee Survey report.  They now are collecting individual course data, which gives them more fine-grained numbers about who is entering the major, who is retained until mid-level, and who makes it to the upper-level.  Previously, they mostly just had enrollment and graduation data.  These new data give them new insights.  For example, we are getting more women and URM in computing, but we are not retaining them all.

Except in the introductory course for non-majors, the median percentage of women in courses at each level was either fairly constant or increasing [from previous years]. The most notable increase was in the mid-level course, where the median percentage of women went from 17.4 in 2015 to 20.0 in 2016. The median percentage of women in the upper-level course also increased, from 14.1 to 15.9 percent. We see a slight drop-off from the median percentage of women in the introductory course for majors in 2015 (21.0 percent) to the median percentage of women in the mid-level course in 2016 (20.0 percent), and a somewhat larger drop-off between the median percentage of women in the mid-level course in 2015 (17.4 percent) and the median percentage of women in the upper-level course in 2016 (15.9 percent).  Because the median percentage at each level is for a single representative course, not for all students at that level, some of the differences between levels may be attributable to the specific courses on which the institutions chose to report. Overall, however, this trend of decreasing representation of women at higher course levels is congruent with other data.

Source: The 2016 Taulbee Survey: Supplementary Report on Course-level Enrollment – CRA

September 18, 2017 at 7:00 am 3 comments

British girls “logging off” from CS: What’s the real problem?

The BBC reports (in the article linked below) that the “revolution in computing education has stalled.”  The data from England (including the Roehampton Report, discussed in this blog post) do back up that claim — see the quotes at the bottom.

In this post, I’m reflecting on the response from the British Computer Society. “We need to do more with the curriculum to show it’s not just a nerdy boys’ subject. We’ve got to show them it’s about real problems like climate change and improving healthcare.”  There are some interesting assumptions and warrants in these statements.  Do girls avoid CS because they think it’s a boys’ subject, or because it’s not about real problems?  How does the curriculum “show” that it is (or isn’t) a “nerdy boys’ subject”?  If the curriculum emphasized “real problems,” would it no longer be a “nerdy boys’ subject”?  Are these at all connected? Would making CS be like “climate change and improving healthcare” attract more female students?

First, I’d like to know if the girls choosing ICT over CS are actually saying that it’s because CS is “a nerdy boys’ subject,” and if the girls know anything about the curriculum in CS.  In our research, we found that high school students know very little about what actually happens in undergraduate CS, and undergraduate students in CS don’t even know what’s in their next semester’s classes. Changing the curriculum doesn’t do much good if the girls’ decisions are being made without knowing about the curriculum.  The former claim, that CS is perceived by girls as a “nerdy boys’ subject,” is well-supported in the literature.  But is that the main reason why the girls aren’t enrolling?

Do we know that this a curriculum issue at all? The evidence suggests that there are other likely reasons.

  • Maybe it’s not the curriculum’s “problem” focus, but the “learning objective” focus. Do the girls percieve that the point of the course is to become part of the Tech industry as a professional programmer?  Maybe girls are more interested in broadening their potential careers and not limiting their options to IT?  ICT can be used anywhere.  CS might be perceived as being about being a software developer.
  • Are the girls seeing mass media depictions of programming and deciding that it’s not for them?  A 2016 ICER paper by Colleen Lewis, Ruth Anderson, and Ken Yasuhara explored the reasons why students might not feel that they have a good “fit” with CS (see ACM paper link here).  But are those the reasons why women might not even try CS? Maybe they have had experiences with programming and decided that they didn’t fit? Or maybe the decided that syntax errors and unit tests are just tedious and boring?
  • Are the girls seeing mass media depictions of the Tech industry and deciding that they’d rather not be a Googler or work at Uber? They are probably hearing about things like the Damore memo at Google. Whether they think he’s right or not, maybe girls are saying that they just don’t want to bother.
  • Do the girls have more choices, and CS is simply less attractive in comparison?  It may be that girls know that CS is about solving real problems, but they’d rather solve real problems in law, medicine, or business.
  • Do the girls perceive that wages are not rising in the Tech industry?  Or do the girls perceive that they can make more money (perhaps with fewer negative connotations) as a lawyer, doctor, or businessperson?

I have heard from some colleagues in England that the real problem is a lack of teachers.  I can believe that having too few teachers does contribute to the problem, but that raises the same questions at another level.  Why don’t teachers teach computer science?  Is it because they don’t want to be in the position of being “vocational education,” simply preparing software developers?  Or are teachers deciding that they are dis-interested in software development, for themselves or for their students?  Or are the teachers looking at other areas of critical need for teachers and decide that CS is less attractive?

Bottom line is that we know too little, in the UK or in the US (see Generation CS), about what is influencing student and teacher decisions to pursue or to avoid classes in computing. The reality doesn’t matter here — people make decisions based on their perceptions.

In England, entries for the new computer science GCSE, which is supposed to replace ICT, rose modestly from 60,521 in 2016 to 64,159 this year. Girls accounted for just 20% of entries, and the proportion was a tiny bit lower than last year.

ICT entries fell from 84,120 to 73,099, which you would expect as the subject is disappearing from the national curriculum. But it had proved more attractive to girls. Even there, the proportion of female entries fell from 41% to 39%.

Combine the two subjects, and you find that the number studying either subject has fallen by over 7,000 in the past year. Back in 2015 more than 47,000 girls were getting some kind of computing qualification, and that has fallen to about 41,000 – just 30% of the total.

Source: Computer science: Girls logging off – BBC News

September 15, 2017 at 7:00 am 8 comments

The factors influencing students choosing to go into STEM: Economics and gender matter

I saw this in a College Board report, which summarized the paper cited below with these bullets:

  • For both genders, academics played a large part in major choice—passing grades in calculus, quantitative test scores, and years of mathematics in high school were notable.
  • Also important to both young men and women was a student’s own view of his or her quantitative/mathematical abilities.
  • Key drivers in decision making differed between genders. First-generation status correlated with young men being more likely to major in engineering, while a low-income background was associated with young women majoring in scientific fields.

Based on the findings presented here, first generation status leads to a greater likelihood of choosing engineering careers for males but not for females. Financial difficulties have a greater effect on selecting scientific fields than engineering fields by females. The opposite is true for males. Passing grades in calculus, quantitative test scores, and years of mathematics in high school as well as self-ratings of abilities to analyze quantitative problems and to use computing are positively associated with choice of engineering fields.

Source: Choice of Academic Major at a Public Research University: The Role of Gender and Self-Efficacy | SpringerLink

July 31, 2017 at 7:00 am 2 comments

Helping students succeed in AP CS: GT Computing Undergraduate Female Rising Up to Challenge in CS

There’s a common refrain heard at “CS for All” and BPC events in the US these days. “AP CS A is just terrible. AP CS Principles will fix everything.” The reality is that there are bad AP CS A classes, and there are good ones. There is evidence that just having good curricula doesn’t get you more and more diverse students. The more important reality is that AP CS A accurately matches most introductory computer science classes in the United States. If you want students to succeed at the CS classes that are in our Universities today, AP CS A is the game to play at high school.

That’s why Barbara’s Rise Up programs are so important. She’s helping female and African-American students succeed in the CS that’s in their schools and on University campuses today. And she’s having tremendous success, as seen in the story below about a female high school football player who is now a CS undergraduate.

Barbara’s work is smart, because she’s working with the existing CS infrastructure and curricula. She’s helping students to succeed at this game, through a process of tutoring and near-peer mentoring. This is a strategy to get more female CS undergraduates.

That’s when she discovered Sisters Rise Up 4 CS, a relatively new program developed in Fall 2014 at Georgia Tech by Barbara Ericson. The program was based on Project Rise Up 4 CS, which aims to help African-American students pass the AP Computer Science A exam. Sisters Rise Up does the same for females.The program offers extra help sessions in the form of webinars and in-person help sessions, near-peer role models, exposure to a college campus, and a community of learners.“The program helped me get hooked on computer science,” Seibel said. “I started to actually learn. Seeing that some of the girls in the program had interned at Google or other places like that, and that they really loved CS, it gets you excited about it. They were only a few years older than me, and I was like, ‘Oh. That could be me.’”

Source: GT Computing Undergraduate Sabrina Seibel Rising Up to Challenge in CS | College of Computing

July 26, 2017 at 9:00 am 1 comment

Teaching the students isn’t the same as changing the culture: Dear Microsoft: absolutely not. by Monica Byrne

A powerful blog post from Monica Byrne with an important point. I blogged a while back that teaching women computer science doesn’t change how the industry might treat them.  Monica is saying something similar, but with a sharper point. I know I’ve heard from CS teachers who are worried about attracting more women into computing.  Are we putting them into a unpleasant situation by encouraging them to go into the computing industry?

Then—gotcha!—they’re shown a statistic that only 6.7% of women graduate with STEM degrees. They look crushed. The tagline? “Change the world. Stay in STEM.”

Are you f***ing kidding me?

Microsoft, where’s your ad campaign telling adult male scientists not to rape their colleagues in the field? Where’s the campaign telling them not to steal or take credit for women’s work? Or not to serially sexually harass their students? Not to discriminate against them? Not to ignore, dismiss, or fail to promote them at the same rate as men? Not to publish their work at a statistically significant lower rate?

Source: Dear Microsoft: absolutely not. | monica byrne

June 30, 2017 at 7:00 am 3 comments

Jean Sammet passes away at age 89

Jean Sammet passed away on May 21, 2017 at the age of 88. (Thanks to John Impagliazzo for passing on word on the SIGCSE-members list.)  Valerie Barr, who has been mentioned several times in this blog, was just named the first Jean E. Sammet chair of computer science at Mount Holyoke.  I never met Jean, but knew her from her work on the history of programming languages which are among the most fun CS books I own.

Sammet

GILLIAN: I remember my high school math teacher saying that an actuary was a stable, high-paying job. Did you view it that way?

JEAN: No. I was looking in The New York Times for jobs for women—when I tell younger people that the want ads were once separated by gender, they’re shocked—and actuary was one of the few listed that wasn’t housekeeping or nursing, so I went.Sammet found her way to Sperry. “Everything from there, for quite a while, was self-learned,” she says. “There were no books, courses, or conferences that I was aware of.” For her next move she applied to be an engineer at Sylvania Electric Products—though the job was again listed for men.

Source: Gillian Jacobs Interviews Computer Programmer Jean E. Sammet | Glamour

May 26, 2017 at 7:00 am 1 comment

We can teach women to code, but that just creates another problem: Why Computational Media is so female

I suspect that the problem described in this Guardian article is exactly what’s happening with our Computational Media degree program.  The BS in CM at Georgia Tech is now 47% female, while the BS in CS is only 20% female.  CM may be perceived as front-end and CS as back-end.

But here’s the problem: the technology industry enforces a distinct gender hierarchy between front-end and back-end development. Women are typecast as front-end developers, while men work on the back end – where they generally earn significantly more money than their front-end counterparts. That’s not to say that women only work on the front end, or that men only work on the back end – far from it. But developers tell me that the stereotype is real.

The distinction between back and front wasn’t always so rigid. “In the earliest days, maybe for the first 10 years of the web, every developer had to be full-stack,” says Coraline Ada Ehmke, a Chicago-based developer who has worked on various parts of the technology stack since 1993. “There wasn’t specialization.”

Over time, however, web work professionalized. By the late 2000s, Ehmke says, the profession began to stratify, with developers who had computer science degrees (usually men) occupying the back-end roles, and self-taught coders and designers slotting into the front.

Source: We can teach women to code, but that just creates another problem | Technology | The Guardian

May 19, 2017 at 7:00 am 3 comments

Older Posts


Recent Posts

September 2017
M T W T F S S
« Aug    
 123
45678910
11121314151617
18192021222324
252627282930  

Feeds

Blog Stats

  • 1,426,938 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 5,143 other followers

CS Teaching Tips