Archive for February, 2022

Updates: Workshop on Contextualized Approaches to Introduction to Computing, from the Center for Inclusive Computing at Northeastern University

From Nov 2020 to Nov 2021, I was a Technical Consultant for the Center for Inclusive Computing at Northeastern University, directed by Carla Brodley. (Website here.) CIC works directly with CS departments to create significant improvements in female participation in computer science programs. I’m no longer in the TC role, but I’m still working with CIC and Carla. I’ll be participating in a workshop that they’re running on Monday March 21. I’ll be talking about Media Computation in Python, and probably show some of the things we’re working on for the new classes here at Michigan.

https://www.khoury.northeastern.edu/event/contextual-approaches-to-introduction-to-computing/

Contextual Approaches to Introduction to Computing

Monday 3/21/22, 3pmEST/12pmPST

Moderator: Carla Brodley;  Speakers: Valerie Barr, Mark Guzdial, Ben Hescott, Ran Libeskind-Hadas, Jakita Thomas

Brought to you by the Center for Inclusive Computing at Northeastern University

 

In this 1.5 hour virtual workshop, faculty from five different universities in the U.S. will present their approach to creating and offering an introductory computer science class (CS0 or CS1) for students with no prior exposure to computing. The key differentiator of these approaches is that the introduction is contextualized in one area outside of computing throughout the semester. Using the context of areas such as cooking, business, biology, media arts, and digital humanities, these courses appeal to students across the university and have realized spectacular results for student retention in CS0/CS1, persistence to taking additional CS courses, and declaring a major or minor in computing. The importance of attracting students to computing after they enter university is critical to moving the needle on increasing the demographic diversity of students who graduate in computing. Interdisciplinary introductory computing classes provide a pathway to students discovering and enjoying computing after they start university. They also help students with no prior coding experience gain familiarity with computing before taking additional courses required for the CS major. The workshop will begin with a short presentation by each faculty member on their approach to contextualized CS0/CS1 and will touch upon the university politics involved in its creation, the curriculum, and the outcomes. We will then split into smaller breakout sessions five times to enable participants to meet with each of the five presenters for questions and more in-depth conversations.

February 25, 2022 at 7:00 am 1 comment

Updates: Dr. Barbara Ericson awarded ACM SIGCSE 2022 Outstanding Contributions to Education

March 2-5 is the ACM SIGCSE Technical Symposium for 2022 in Providence, RI. (Schedule is here.) I am absolutely thrilled that my collaborator, co-author, and wife is receiving the Outstanding Contributions to Education award! She is giving a keynote on Friday morning. Her abstract is below.

She’s got more papers there, on CS Awesome, on her ebooks, and on Sisters Rise Up. I’m not going to summarize them here. I’ll let you look them up in the schedule.

A couple of observations about the SIGCSE Awards this year that I love. Both Barb and the Lifetime Service to the Computer Science Education Community awardee, Simon, earned their PhD’s later in life, both within the last 10 years. Barb is the first Assistant Professor to win the Outstanding Contributions award in the 40 year history of the award.

I have one Lightning Talk. The work I’m doing these days is computing education, but it’s not in the mainstream of CS education — I focus on computing education for people who don’t want to study CS. So, I’m doing a five minute lightning talk on Teaspoon languages as provocation to come talk to me about this approach to integrating computing into non-CS subjects. You can see the YouTube version here. This is my attempt to show that each Teaspoon language can be learned in 10 minutes — I describe all of two of them in less than five minutes!

Outstanding Contribution Plenary

Friday, March 4 / 8:15 – 9:45

Ballroom A-E (RICC)

Barbara Ericson (University of Michigan)

Improving Diversity in Computing through Increased Access and Success

My goal is to increase diversity in computing. In this talk I explain why diversity is important to me. My strategy to improve diversity is to increase access and success. This work includes teacher professional development, summer camps, weekend workshops with youth serving organizations, curriculum development, helping states make systemic changes to computing education, publicizing gender and race issues in Advanced Placement Computer Science, creating free and interactive ebooks, testing new types of practice problems/tools, and offering near-peer mentoring programs.

Barbara Ericson is an Assistant Professor in the School of Information at the University of Michigan. She conducts research at the intersection of computing education, the learning sciences and HCI, to improve students’ access to and success in computing. With her husband and colleague, Dr. Mark Guzdial, she received the 2010 ACM Karl V. Karlstrom Outstanding Educator Award for their work on media computation. She was the 2012 winner of the A. Richard Newton Educator Award for her efforts to attract more females to computing. She is also an ACM Distinguished Member for Outstanding Educational Contributions to Computing.

February 24, 2022 at 7:00 am 2 comments

Updates: NSF Funding to Study Learning with Teaspoon Languages for Discrete Mathematics

A few months before the pandemic started, Dr. Elise Lockwood at Oregon State reached out to me. She’d heard that I was interested in programming for teaching non-CS subjects, and that’s what she was doing. I loved what she was doing, and we started having regular chats.

Elise is a mathematics education researcher who has been studying how students come to understand counting problems. Like “If you have three letters and four digits, how many license plates can you make?” Or “How many two letter words can you make from the letters ROCKET, if you don’t allow double letters?” She’s been exploring having students learn counting problems by manipulating Python programs to generate all the possible combinations, then counting them. (Check out her recent papers on her Google Scholar page, especially those with her student Adaline De Chenne.)

As I said, I loved what she was doing, but Python seemed heavy-handed for this. I was starting to work on our Teaspoon languages. Could we build lighter-weight languages for the same problems?

As I kept reading Elise’s papers, I started working on two possible designs.

In one of them (called Counting Sheets), we play off of students’ understanding of spreadsheets. You can just describe what you want in each column, and the system will exhaustively generate every combination:

Or you can use an “=“ formula that knows how to do very simple operations with sets. Here’s a solution to the two letter words from ROCKET without repeating problem:

This is one of the tools that we’ve been building in support for both Spanish and English keywords (like Pixel Equations, that I talked about last September):

Elise found Counting Sheets intriguing, but she was worried if it would work to make the iterative structures implicit and declarative. Would students need to see the iteration to be able to reason about the counting processes?

So, I built a second Teaspoon language, called Programmed Counting. Here, the loops are explicit, like Python, but the only variable type is a set, and the words and phrases of the language come from counting problems.

Elise was a real sport, trying out the languages as I generated prototypes and finding the holes in what I was doing. We met face-to-face only once, when I went to Portland for SIGCSE 2020 — the one that got cancelled the very morning it was supposed to start. I had lunch with Elise, and we worked for a few hours on the designs. Barb and I went home the next day, and the big pandemic lockdown started right afterwards.

Will these work for learning? We don’t know — but we just got funding from NSF to find out! “We” here is me and PhD student Emma Dodoo, and we’ll be involving Adaline as a consultant. Elise is currently a rotator at NSF, so she’s involved only from the sidelines because of NSF COI issues. Our plan is to run experiments with various combinations of the Teaspoon languages (one or both), standalone and with Python. Do we need Python if we have the Teaspoon languages? Do the Teaspoon languages serve as scaffolding to introduce concepts before starting into Python?

Below is the abstract on the new IUSE grant, as an overview of the project. University of Michigan CSE Communications wrote a nice article about the work, available here. Huge thanks to Jessie Houghton, Angela Li, and Derrick White who turned my LiveCode prototypes into functioning Web versions.

Abstract for NSF

Programming is a powerful tool that scientists, engineers, and mathematicians use to gain insight into their problems. Educators have shown how programming integrated into other subjects can be a powerful tool to enhance learning, from algebra to language arts. However, the cost is learning the programming language. Few students in the US learn programming — less than 5% of high school students nationwide. Most students do not have the opportunity to use programming to support ™ learning. This project is investigating a new approach to designing and implementing programming languages in classrooms: Task-specific programming (TSP) languages. TSP languages are explicitly design for integration in specific classes, to meet teacher needs, and to be usable with less than 10 minutes of instruction. TSP languages can make the power of programming to enhance learning more accessible. This project will test the value of TSP languages in discrete mathematics, which is a gateway course in some computer science programs.

The proposed project tests the use of two different TSP languages and contrasting that with a traditional programming language, Python. The proposed work will contribute to understanding about (1) the role of programming in learning in discrete mathematics, (2) the value of task-specific languages to scaffold learning, (3) how alternative representational forms for programming influence student use of TSP languages, and (4) how the use of TSP languages alone or in combination with traditional languages enhance students’ sense of authenticity and ability to transfer knowledge.

February 23, 2022 at 7:00 am 1 comment

Updates: Developing the University of Michigan LSA Program in Computing for the Arts and Science

This blog is pretty old. I started it in June 2009 — almost 13 years ago. The pace of posting has varied from every day (today, I can’t understand how I ever did that!) to once every couple of months (most recently). There are things happening around here that are worth sharing and might be valuable to some readers, but I’m not finding much time to write. So, the posts the rest of this week will be quick updates with links for more information.

During most of the pandemic, I co-chaired (with Gus Evrard, a Physics professor and computational cosmologist) the Computing Education Task Force (website) for the University of Michigan’s College of Literature, Science, and the Arts (LSA). LSA is huge — about 20K students. (I blogged about this effort in April of last year.) Our job was to figure out what LSA was doing in computing education, and what else was needed. Back in November, I talked here about the three themes that we identified as computing education in LSA:

Our report was released last month. You can see the release statement here, and the full report here. It’s a big report, covering dozens of interviews, a hundred survey responses, and a huge effort searching over syllabi and course descriptions to find where computing is in LSA. We made recommendations about creating a new program, new courses, new majors and minors, and coordinating computing education across LSA.

Now, we’re in the next phase — acting on the recommendations. LSA bought me out of my teaching for this semester, and it’s my full-time job to define a computing education program for LSA and to create the first courses in the program. We’re calling it the Program for Computing in the Arts and Science (PCAS). I’m designing courses for the Computing for Expression and Computing for Justice themes, in an active dialogue (drawing on the participatory design methods I learned from Betsy DiSalvo) with advisors from across LSA. (There are courses in LSA that can serve as introductions to the Computing for Discovery theme, and Gus is leading the effort to coordinate them.) The plan is to put up the program this summer, and I’ll start teaching the new courses in the Fall.

February 22, 2022 at 7:00 am 6 comments


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 9,052 other followers

Feeds

Recent Posts

Blog Stats

  • 2,030,639 hits
February 2022
M T W T F S S
 123456
78910111213
14151617181920
21222324252627
28  

CS Teaching Tips