Posts tagged ‘computer science teachers’

Analyzing CS in Texas school districts: Maybe enough to take root and grow

My Blog@CACM for this month is about Code.org’s decision to shift gradually the burden of paying for CS professional development to the local regions — see link here.  It’s an important positive step that needs to happen to make CS sustainable with the other STEM disciplines in K-12 schools.

We’re at an interesting stage in CS education. 40-70% of high schools have CS, but the classes are pretty empty.  I use Indiana and Texas as examples because they’ve made a lot of their data available.  Let’s drill a bit into the Texas data to get a flavor of it, available here.  I’m only going to look at Area 1’s data, because even just that is deep and fascinating.

Brownsville Intermediate School District. 13,941 students. 102 in CS.

Computer_Science_Regional_Data___STEM_Center___The_University_of_Texas_at_Austin

Of the 10 high schools in Brownsville ISD, only two high schools have anyone in their CS classes.  Brownsville Early College High School has 102 students in CS Programming (no AP CS Level A, no AP CSP).  That probably means that one teacher has several sections of that course — that’s quite a bit.  The other high school, Porter Early College High School has fewer than five students in AP CS A.  My bet is that there is no CS teacher there, only five students doing an on-line class.  That means for 10 high schools and 13K students, there is really only one high school CS teacher.

Edinburg Consolidated Independent School District, over 10K students, 92 students in CS.

Computer_Science_Regional_Data___STEM_Center___The_University_of_Texas_at_Austin-3

This is a district that could grow CS if there was will.  There are 6 high schools, but two are special cases: One with less than 5 students, and the other in a juvenile detention center.  The other four high schools are huge, with over 2000 students each.  In Economedes, that are only 9 students in AP CS A — maybe just on-line?  Edinburg North and Robert R Vela high school each have two classes: AP CS A and CS1.  With 21 and 14, I’m guessing two sections.  The other has 43 and 6. That might be two sections of AP CS A and another of CS1, or two sections of AP CS A and 6 students in an on-line class.  In any case, this suggests two high school CS teachers (maybe three) in half of the high schools in the district.  Those teachers aren’t teaching only CS, but with increased demand and support from principals, the CS offerings could grow.

It’s fascinating to wander through the Texas data, to see what’s there and what’s not.  I could be wrong about what’s there, e.g., maybe there’s only one teacher in Edinburg and she’s moving from school-to-school.  Given these data, there’s unlikely to be a CS teacher in every high school, who just isn’t teaching any CS. These data are a great snapshot. There is CS in Texas high schools, and maybe there’s enough there to take root and grow.

 

October 19, 2018 at 7:00 am 2 comments

CRA Memo on Best Practices for Engaging Teaching Faculty in Research Computing Departments

I’m excited to see this memo from the Computing Research Association on the status of teaching faculty in computing departments. Computing departments are increasingly relying on teaching faculty, and it’s important to give them fair and equitable treatment.

I wrote in 2016 that “CS Teaching Faculty are like Tenant Farmers.” This memo addresses some of the issues I raised, though some are buried in the text of the memo.  I argued that teaching faculty should be involved in hiring for both traditional and teaching faculty, and that teaching faculty should serve in upper-level leadership positions.  The report does state halfway down the report, “Similarly, teaching faculty should be broadly included in faculty governance on matters related to their roles in the department, including participation in faculty meetings, voting rights on matters impacting the education mission, inclusion in evaluation of the teaching performance of other faculty, and input on hiring decisions.”  This memo is a step in the right direction.

To achieve their educational mission, computing departments at research universities increasingly depend on full-time teaching faculty who choose teaching as a long-term career. This memo discusses the need for teaching faculty, explores the impact of teaching faculty, and recommends best practices.

Essential best practices for departments include:

  • Departments should provide teaching faculty with equitable rights and resources, except in limited areas where differing job responsibilities make that inappropriate.

  • Departments should encourage teaching faculty to be equal and active partners on projects and committees with the goal of contributing to the department’s educational mission.

  • Departments should set course, preparation, student, and service loads of teaching faculty at a level that allows for innovation and quality instruction.

    ….

Source: Laying a Foundation: Best Practices for Engaging Teaching Faculty in Research Computing Departments

August 17, 2018 at 7:00 am 6 comments

High School CS Teacher’s Experience like University CS Teacher’s: “Code Shock”

Jeff Yearout has been teaching for over 25 years, and is just in his second year of teaching CS.  His concerns in his blog echo many of the same ones that I hear from higher-education CS teachers, e.g., dealing with the wide variance of students, and getting all students to engage around code (pseudo or otherwise).

I think one of the hardest things to manage in designing a curriculum is how to dial the difficulty up at a proper pace for the “center mass” of the class skill level. And in this new curriculum from PLTW this particular unit starts out manageable, but suddenly shoots up rapidly, thus the “code shock” mentioned above. I also have the challenge of having a lot of kids in class who simply don’t want to interact in class when, for instance, I’m working through pseudocode on the board.

From “Teaching CS is Hard

April 9, 2018 at 7:00 am 4 comments

Require CS at University in order to Get CS into K-12 (Revisited)

I wrote a blog post in Blog@CACM in 2011: If You Want High School CS, Require Undergraduate CS.  Everything we’ve seen since then makes me more convinced this is a viable path to providing high-quality CS education for every student.

There is a growing body of evidence that every student at University will need computing. The recent report from Burning Glass and Oracle Academy shows how much in demand CS skills are, far beyond just those who will be professional software developers. Teaching everyone about computing would help in addressing Cathy O’Neill’s calls for more people to be investigating the algorithms controlling our lives. The argument for why University involvement is necessary for K12 CS Ed is based on an observation made recently by Code.org: We are not producing enough CS teachers in University. If everyone took CS at University, that would also reach pre-service teachers. That would make it easier for those teachers to teach CS in the future.

Requiring CS at University may help with the bigger cultural and perception problem.  In England, we see that schools aren’t offering CS even if it’s part of the required curriculum, and students (especially females) aren’t taking it (see the Royal Society report from last month).  The problem is that we’re trying to shoehorn CS into a culture that isn’t asking for it, or rather, the students (and schools) don’t perceive a need for CS. This is a form of the same problem that came up when we were talking about getting more formal methods into software development practice. All professionals should understand the role of computing in our society and how to use computing as a literacy: To express ideas, to share ideas, and to use in developing ideas.

Schools follow society. Society is rarely (if ever) changed by schooling. If you want a computationally literate society, convince the adults. If most professionals use computing, the same professionals that students want to be like, then there is a social reason to learn computing. Social demand to prepare K-12 students in that literacy makes it more likely for that literacy to succeed in K-12 education.  Trying to teach all students something that society doesn’t value for everyone is counter to situated learning theory.  Students (even K-12 students) are engaged in legitimate peripheral participation — their “job” is to figure out what is expected of them in society. If they don’t see computational literacy broadly in society, students don’t get the message that it’s important for everyone to learn.

When I make this suggestion to University faculty, I often hear the argument, “Anything you require of students, they will hate.” Then they tell me an anecdote of some student who hated a requirement, or of some personal experience of a class they hated. I know of no empirical evidence that says that this is generally true. We do have empirical evidence that says it’s false. Mike Hewner’s work found that US students take required classes in order to discover what they like, and they make curricular choices based on what they like.

We are already seeing students from all over campus flooding into our classes (see the Generation CS report and the National Academies report). We are already learning how to manage the load. It’s already happening in some Universities that most or all students at University are taking CS. Why not require it so that we get the Education students who we may not be seeing yet in CS classes?

Instead of using Universities to make CS education work, we are pouring money into CS Ed via in-service professional development — a tenfold increase in England, and $1.5B in the next five years in the US.  In general, more money in education alone doesn’t change things. We have to think about systems, policies, and our educational ecosystem. Universities are part of that educational ecosystem.

Universities play a role in K-12 education in all other subjects. We have to involve them in order to create sustainable K-12 Computer Science education.

December 15, 2017 at 7:00 am 1 comment

Universities aren’t preparing enough computer science teachers, and we have no path to get there

Not really a surprising claim, but I still think that we’re not talking enough about this. No K-12 subject is taught nationwide without producing teachers from universities. We simply cannot create sustainable K-12 CS education without universities producing CS teachers (called “pre-service teacher professional development”). Currently, we produce new CS teachers by recruiting existing teachers from other subjects (called “in-service teacher professional development”). None of our models for growing CS nationwide currently have a plan to replace in-service with pre-service (as described in this blog post).

Looking for answers, we examined the state-by-state data on the number of graduates prepared to teach various subjects. We found that in 2016, only 75 teachers graduated from universities equipped to teach computer science. Compare that to the number of graduating teachers prepared in mathematics (12,528) and the sciences (11,917 across general science, biology, chemistry, physics, and earth science).

Source: Universities aren’t preparing enough computer science teachers

November 24, 2017 at 7:00 am 7 comments

More Teachers, Fewer 3D Printers: How to Improve K–12 Computer Science Education 

A nice summary of where we’re at with CS Ed in the United States, where additional funding and effort should go, and where it shouldn’t.

Addressing the teacher shortage should be the number one use for the new funds allocated by the Trump administration, says Mark Stehlik, a computer science professor at Carnegie Mellon University. A lack of qualified teachers is the biggest barrier to CS education in the U.S., he says, and he thinks the problem is going to get worse. An earlier generation of CS educators has started to retire, and he says younger CS graduates “aren’t going into education because they can make twice or more working in the software industry.”

One solution could be to expand the reach of each CS educator through online classes. But “online curricula aren’t going to save the day, especially for elementary and high school,” Stehlik says. “A motivated teacher who can inspire students and provide tailored feedback to them is the coin of the realm here.”

Where the money should not be spent? On hardware and equipment. Laptops, robots, and 3D printers are important, says Code.org’s Yongpradit, “but they don’t make a CS class. A trained teacher makes a CS class. So money should be focused on training teachers and offering robust curriculum.”

Source: More Teachers, Fewer 3D Printers: How to Improve K–12 Computer Science Education – IEEE Spectrum

October 18, 2017 at 7:00 am 8 comments

Preparing Tomorrow’s Faculty to Address Challenges in Teaching Computer Science

I’ve blogged here when we have opened registration for the New Computing Faculty workshops (e.g., here), but I haven’t really explained why we’re doing them.  We took a lot of grief on Twitter for the workshops in the Spring, and 120 characters just isn’t enough to explain the whole story. We (Leo Porter, Cynthia Lee, Beth Simon, and me) wrote an article that appeared in the May CACM explaining the rationale.  If you don’t have ACM Digital Library access, you can grab the paper from my Guzdial Papers page here in the blog.

The new challenges compound existing teaching-related challenges for the field. We still need to broaden participation in our field, with the lowest percentage of women majors in all of STEM. The economic rewards of a computing career make it even more important to bridge the digital divide. If there are more students than faculty can teach effectively, they may be inclined to lean on a pessimistic belief that success is dependent on “brilliance” and innate ability where only a subset of students can succeed. If CS faculty feel there is little they can do to change students’ outcomes in their individual classrooms, it will be true. Research shows that more CS faculty hold this mistaken and unproductive view of students than faculty in other STEM disciplines.

Source: Preparing Tomorrow’s Faculty to Address Challenges in Teaching Computer Science | May 2017 | Communications of the ACM

October 2, 2017 at 7:00 am 1 comment

Older Posts


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 4,325 other followers

Feeds

Recent Posts

Blog Stats

  • 1,575,170 hits
November 2018
M T W T F S S
« Oct    
 1234
567891011
12131415161718
19202122232425
2627282930  

CS Teaching Tips