Governor of Rhode Island explains why we should teach programming to everyone

Gina Raimondo, the governor of Rhode Island, was on Freakonomics Radio a few weeks ago. Stephen Dubner challenged their plans to offer computing education at all grade levels in every district.  She had a strong response. Dubner’s question is good. We still don’t have the empirical evidence for the value of teaching computing to everyone. We should do that research — not to figure out if Raimondo made the right bet, but to tune what we’re doing to make sure that we get the maximum benefit for the investment.

I recommend the whole interview.

DUBNER: So, I hear about this kind of thinking a lot, and I certainly understand the appeal and the resonance. But I do also wonder if there’s a proven upside of having everyone learn computer science or programming. It strikes me a little bit like the equivalent of having every student in America during the boom of the internal combustion engine learn to take apart a carburetor. And then I think, if you look at the history of economics and progress, that one of the main strengths of economic progress is the division of labor and specialization, rather than everybody chasing after the latest trends. So I’m curious what the evidence was that inspired that move of yours.

RAIMONDO: I think of it as access and exposure, and also just providing people with a basic level of essential skills. So, everyone has to take math. They may become a writer, they may become an actor, but they ought to have a certain basic level of math skills. First of all, because it’s an essential skill to function. And by the way, they might like math. I think digital skills are the same thing. No matter what job you have, you have to have some basic familiarity with computer skills and digital skills. And so it is as essential in this economy as any other skill that we teach. But also, we know — and there’s loads of data on this girls, people of color, and low-income folks are less likely to go into I.T. fields, which tend to be higher-paying. However, if they’re exposed to some computer training, they’re much more likely to go into the field and do well at it.

Source: How to Be a Modern Democrat — and Win – Freakonomics

February 16, 2018 at 7:00 am 1 comment

Teasing out the meaning of “online classes” — Online Courses Are Harming the Students Who Need the Most Help: NYTimes

The NYTimes published an interesting piece on the state of online education today. Increasingly, online education is being used in schools as a response to students failing in face-to-face, traditional classrooms.  If you’re not making it in the regular class, try it again in the online class.  The article describes how that’s not working. Students who fail in traditional classes need more personal contact and support, not less.

I love that the name of the column where this article appeared is called “The Economic View,” because that’s exactly what it is.  We do now how to teach every student well — give each child a well-educated teacher for their particular subject (Bloom’s two-sigma effect). We can’t afford that, so we make do with less.  But we should aim to do no harm.  Current practice with online classes is clearly doing harm.

The NYTimes article is reporting on empiricism.  We cannot empirically determine what might online classes become. The author, Susan Dynarski of the University of Michigan, is reporting on current practice and on the result of policy.  Can online classes help students?  Absolutely, and the OMS CS is a good example of that.  Can we build online classes that work better for students who struggle with traditional classes?  Maybe — it’s hard to see them in this study. At the ECEP 2018 meeting, Caitlin Dooley (Associate Superintendent for Georgia) said that their online classes do better than face-to-face classes, in part because of caring (“mama bear”) teachers who support the students outside of the online classes.  The online classes that Susan Dynarski is studying are clearly not working well for struggling students.  There may already be models that work well, but they’re swamped in a general study of policy across different kinds of online classes.  Dynarski’s article may just be telling us that the current average practice is insufficient. There may be better models (maybe still in research) that could correct these ills.

Dynarski’s article is fascinating and is sounding an important alarm. It should be even greater motivation for those of us who are working to invent better online education.

Online education helps school districts that need to save money make do with fewer teachers. But there is mounting evidence that struggling students suffer.

In the fully online model, on the other hand, a student may never be in the same room with an instructor. This category is the main problem. It is where less proficient students tend to run into trouble. After all, taking a class without a teacher requires high levels of self-motivation, self-regulation and organization. Yet in high schools across the country, students who are struggling in traditional classrooms are increasingly steered into online courses.

Source: Online Courses Are Harming the Students Who Need the Most Help

February 12, 2018 at 7:00 am 1 comment

Finding a home for computing education in US Schools of Education: Priming the Computing Teacher Pump

Please sign up join us for an event to launch our report and share:

Priming the Computing Teacher Pump: Integrating Computing Education into Schools of Education

This report focuses on Schools of Education (rather than Departments or Colleges of Computer Science/Computing) for creating pathways for CS teacher education.

We challenge US teacher education programs to innovate and integrate a new discipline into their programs. What we propose is nothing less than a change to the American Education canon. Such enormous change will require innovating in different ways, using different models and strategies, before we find models that work. The report, Priming the Pump, will highlight examples of integration from across the United States, and provide concrete recommendations for discussion.

With the expansion of computing education in mainstream K-12 schools, the current training mechanisms for teachers quickly will fall short of supporting a sustainable pipeline of teachers for the scale many cities and states have committed to.

Location: Microsoft Times Square – 11 Times Square, New York, NY

Date + Time: Thursday, April 12th, 2018; 3PM – 6PM ET

www.computingteacher.org

____________________________________________________________________

Apply to Attend and for possible travel funding: Formal Invite to Follow Upon Receipt of Registration

_____________________________________________________________________

Highlights from Priming the Computer Teacher Pump

What do teachers need to know about computing? The question of what teachers need to know about computing should be at the core of developing both the structure and content of teacher preparation programs.”

Teacher Development Models for Computing Education: Currently, few models exist in the United States for the development of rigorous computing education teachers, especially focused on computer science or computational thinking, within schools of education.”

CS Education in Teacher Education: Schools of Education face a number of challenges in terms of preparing more computer science teachers. Trends over the last decade have shown a general lack interest from graduating students in pursuing a career as a teacher. In a 2016 national survey, The National Education Association reported that the number of students planning to major in education in 2014 dropped to an historic low of 4.2%.”

“Preparing Educational Leaders to Support CS Education: There is urgency around preparing administrators and other educational leaders with the knowledge and skills needed to support computer science teaching and learning for all students. To successfully do this, computer science education must be fully established within the complex and multi-layered United States school system.”

_______________________________________________________________________

Organizers/Authors

Leigh Ann DeLyser

NYC Foundation for CS Education (CSNYC)

Joanna Goode

University of Oregon

Mark Guzdial

Georgia Institute of Technology

Yasmin Kafai

University of Pennsylvania

Aman YadavMichigan State University

February 9, 2018 at 7:00 am Leave a comment

Education is About Providing Hope to Everyone: Contrasting the Lost Einsteins and Kennett, Missouri

I’ve had two articles bouncing around in my head that offer contrasting views of higher education and for me, of the purpose for computing education.

In “Lost Einsteins: The Innovations We’re Missing,” the NYTimes tells us about unequal access to opportunity in the United States.  We do not have a meritocracy. Our inventors, patent holders, and innovators overwhelmingly are male, white, and upper income. Two children of equal ability do not get the same access to opportunity, if one is poor, female, or from a minority group. That opportunity includes higher education, access to funding, and the social capital of figuring out how to file a patent or produce an invention.

Women, African-Americans, Latinos, Southerners, and low- and middle-income children are far less likely to grow up to become patent holders and inventors. Our society appears to be missing out on most potential inventors from these groups. And these groups together make up most of the American population.  The groups also span the political left and right — a reminder that Americans of different tribes have a common interest in attacking inequality.

In “A Dying Town: Here in a corner of Missouri and across America, the lack of a college education has become a public-health crisis,” the Chronicle of Higher Education tells us the story of Kennett, Missouri, a town with little hope and few college degrees.  Perhaps it’s correlation, but maybe it’s causation. Only one in 10 adults in Kennett, MO has a four-year degree.  The article points out the correlates for attaining a college degree. There are decreased mortality rates with college attendance.

It would be easy to say this is just about being poor, but people who study the phenomenon say it’s not that simple. Yes, having a job — and the paycheck and health insurance that come with it — matters. Those aren’t all that make a difference, however. Better-educated people live in less-polluted areas, trust more in science, and don’t as frequently engage in risky behaviors. Have a college degree and you’re more likely to wear a seat belt and change the batteries in your smoke alarm.

Both of them are sad stories. I’m struck by the differences in the desired goal in each.  In “Lost Einsteins,” we are told about the innovations and inventions we all are missing out on, because access to opportunity (including higher education) is so biased. In “A Dying Town,” we’re told that everyone need access to the opportunity for higher education.  In Kennett, MO, a college degree means hope, and hope means life — literally.

In “Lost Einsteins,” opportunities like higher education are about creating inventors and innovators. In “A Dying Town,” opportunities like higher education are about improving quality and length of life.  Contrast these perspectives as being like coaching a sports champion and providing public health. I made a similar contrast in my book Learner-Centered Design of Computing Education in how we think about computing education.  Many CS teachers are trying to produce innovators, inventors, champions, and Tech heroes — they want their students to go to the great Tech companies, or invent the next must-have app, or start a company that will be worth millions if not billions.  I argue that we have a much greater need to provide everyone with the computing literacy that they need to be successful in the 21st Century.  It is important to coach the champions, but not at the cost of providing the public health that everyone needs.

I’m curious about the relationship between college degrees and the health issues in Kennett, MO.  I have taught undergraduates for over 25 years.  I’ve never taught anyone to wear a seat belt or to change the batteries in their smoke alarms.  Where did they learn that?  Is it just because they’re smarter after they get the degree?  Or were they prone to do those things anyway, because they were the kind that sought out higher education?  I don’t know, but if it’s causal, we have to be careful not to lose those important side benefits of a college degree as we downsize higher education.  As we get rid of the teachers for the MOOCs, and get rid of the campus for virtual space, we might also get rid of whatever intangibles that lead a college graduate to make the right choices in life, like wearing a seat belt and having a long, healthy, and productive life.

February 5, 2018 at 7:00 am Leave a comment

Will be missing my friends at SIGCSE 2018 — Preparing for What’s Next

I am not going to SIGCSE 2018.  I haven’t missed SIGCSE in a lot of years, and I’m sorry to miss it this year.  SIGCSE is the biggest computing education conference in the world, and it’s the best place to hear what’s going on in CS classes and the United States — and to possibly influence what’s going on.  I’m particularly sorry because I owe Owen Astrachan a beer and dinner.  I lost our bet about Code.org and CSP Curricula.  I have to find another time to pay up.

I’m not going because it’s a time of change for me.  I don’t know for sure what I’m going to be doing next. This post is another in the (perhaps wearisome) series of posts where I explored what a post-full professor should do and my failure CV.

There are two forcing functions for the change:

  • My wife and research partner, Barbara Ericson, is finishing her PhD on adaptive Parsons problems.  She is going to shift her emphasis from being Director of CS Outreach to more research.
  • Our role in ECEP is ending in September.  From “Georgia Computes!” to ECEP, we have been doing work in Broadening Participation in Computing (BPC) for over a dozen years.  We want to move on. Others will carry ECEP further.  I started doing work in BPC as a natural next step from my research on making computing education for a broader audience (e.g., Media Computation).  Different kinds of research and leadership are important for the next steps of BPC Alliance work.

SIGCSE may not be as big a part of my academic life, depending on what comes next for me. I may do more Engineering Education Research in the future.  I may get more involved in preparing future CS teachers. My research directions are changing. I will continue to work towards Computing Education for All, and I’m interested in studying and developing different ways of getting there. The proposals I’m submitting these days are about doing work that looks like Bootstrap. I’d like to do more in applying computing (specifically, programming) as a notation and tool for learning in disciplines other than computer science. Venues other than SIGCSE may be the right places for this kind of work.

It’s going to be a great SIGCSE, and I’m thrilled that my student, Katie Cunningham, is co-author on a paper that will be receiving a Best Paper Award. Sorry I won’t be there to see all my SIGCSE friends this year.

 

February 2, 2018 at 7:00 am 1 comment

ECEP 2018: Measuring and Making Progress on Broadening Participation in Computing

The 2018 Annual Meeting of the Expanding Computing Education Pathways (ECEP) Alliance was at Georgia Tech January 26-27. ECEP is an NSF-funded alliance to broaden participation in computing. We had about 90 participants, state leaders from 16 states and Puerto Rico. Attendees were from a range of positions, from state departments of education, state boards of education, STEM centers, non-profits, Governor’s offices, University professors, and CS teachers from elementary or high school. The focus at this meeting was to define what it means to broaden participation in computing (BPC) education for each state. The state teams worked at defining what data variables they needed in order to inform their BPC goals, and how they would know (by looking at those data) if they were making progress towards those goals.  You can see the play-by-play with pictures via Twitter hashtag #ECEP2017.

I learned so much at this event. I’m still processing all of it, but here are some of the things that are standing out to me right now.

Caitlin Dooley from Georgia Department of Education gave a terrific talk about the challenges in Georgia.  She made the argument that CS is the equity issue of our age.  She said that the challenge of getting CS teachers into poorer (low-SES) and rural districts is that teachers are leaving when they have the skillsets. The challenge is to have good school leaders to retain teachers.

Anne DeMallie from Massachusetts gave a compelling talk about how they’re integrating CS across the curriculum, especially in elementary school. Massachusetts and New Jersey are two states that integrated their CS and Digital Literacy standards, trying to make it easier for schools to integrate CS education. I liked the framework she offered on how to think about integrating CS into other subjects: exist, enhance, and extend.

I was impressed by the states who are setting concrete, measurable goals. Alabama has set a goal of every high school student having access to CS education by 2022. South Carolina plans to provide access to CS education in every middle and high school in five years. Maryland has a detailed 15 year plan that gets every student access to high-quality CS education with certified high school teachers. (Seen below, presented by Megean Garvin.)

Kamau Bobb of Constellations gave our keynote (as a “fireside chat” with Debra Richardson). His talk was exciting and challenging.  He pointed out that high school CS isn’t going to get kids into University. Pushing CS instead of math and science isn’t helping students get admission to higher education.  Schools aren’t held accountable for CS — they’re being held accountable for math, science, and language arts learning. CS has to play a role in meeting student and school needs.

Kamau pointed out that “Segregation is an immutable truth.”  One of the stories he told was to about textual literacy.  During Reconstruction (starting 1865), leaders realized the critical need for all African-Americans to learn to read.  The Georgia Literacy Project to address the dramatic literacy gap was just started in 2010 — 145 years later.  How long will it take us to achieve equitable access to computing education?

Most of the time was spent in working meetings — state teams sitting down with data reports, developing plans for broadening participation in CS, and grounding the plans in what data they have and what trends they expect to see in those data. The challenges of gathering data on the ground are huge.  I was sitting with one state where a CS teacher on the team pointed out that she had 85 students this year. The Department of Education person from that state did a search, and found that none of those students showed up in their database.  Other states pointed out how hard it is to compare data across states.  We use AP CS data for these kinds of comparisons, but in some states (like Arkansas), all AP exams are paid for by the state. That means that more kids are taking the exam, which means that the pass rates have a different context.

The amount of support for CS Education from each state varies dramatically. Many states have no one in the Department of Education who is informed about CS. Here in Georgia, we have one full-time CS coordinator, which is terrific. In Arkansas, they have nine full-time CS specialists to help teachers.

It was energizing to be with so many passionate leaders who are working to improve computing education in their state.  It’s also amazing to see how much work there is to go to reach everyone with high-quality computing education.

This was the last ECEP meeting organized by this group of NSF Principal Investigators. Rick Adrion, Renee Fall, Barbara Ericson, and I are done when the existing ECEP grant runs out at the end of September.  We’ve worked with a new team of PI’s to help them build a proposal for ECEP 2.  The amazing Sarah Dunton, the manager of our state and territory alliance, will continue in ECEP 2. The PIs for ECEP 2 are Carol Fletcher, Anne Leftwich, Debra Richardson, Maureen Biggers, and Leigh Ann DeLyser.  We’re hoping that they get funded and continue to help states make progress on implementing and broadening computing education.

January 29, 2018 at 7:00 am 3 comments

The pushback begins: Who benefits from the push to teach every kid to code?

The pushback was inevitable.  Slate published a piece in December, “Who Benefits From the Push to Teach Every Kid to Code?” The article provides an answer in the subtitle, “Tech companies, for one.”

The article is more history lesson than explicit argument that the driver behind the current effort to promote computing is simply for Tech companies to bolster their bottom line.  It’s still an interesting piece and worth reading.

For some tech companies, this is an explicit goal. In 2016, Oracle and Micron Technology helped write a state education bill in Idaho that read, “It is essential that efforts to increase computer science instruction, kindergarten through career, be driven by the needs of industry and be developed in partnership with industry.” While two lawmakers objected to the corporate influence on the bill, it passed with an overwhelming majority.

Some critics argue that the goal of the coding push is to massively increase the number of programmers on the market, depressing wages and bolstering tech companies’ profit margins. Though there is no concrete evidence to support this claim, the fact remains that only half of college students who majored in science, technology, engineering, or math-related subjects get jobs in their field after graduation. That certainly casts doubt on the idea that there is a “skills gap“ between workers’ abilities and employers’ needs. Concerns about these disparities have helped justify investment in tech education over the past 20 years.

January 26, 2018 at 7:00 am 6 comments

Older Posts


Recent Posts

February 2018
M T W T F S S
« Jan    
 1234
567891011
12131415161718
19202122232425
262728  

Feeds

Blog Stats

  • 1,476,509 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 5,219 other followers

CS Teaching Tips