Posts tagged ‘BPC’

Importance of considering race in CS education research and discussion

I was talking with one of my colleagues here at Michigan about the fascinating recent journal article from Tim Weston and collaborators based on NCWIT Aspirations award applicants, which I blogged about here. I was telling him about the results — what correlated with women’s persistence in technology and computing, and what didn’t or was negatively correlated.

He said that he was dubious. I asked why. He said, “What about the Black girls?”

His argument that the NCWIT Aspirations awards tends to be white and tends to be in wealthy, privileged school districts. Would those correlations be the same if you looked at Black women, or Latina women?

I went back to the Weston et al. paper. They write:

Although all respondents were female, they were diverse in race and ethnicity. Because we know that there are differentiated experiences for students of color in secondary and post-secondary education in the US, and especially women of color, we wanted to make sure we captured any differences in outcomes in our analysis. To do so, we created a variable called Under-represented Minority in Computing (URMC) status that grouped students by race/ethnicity. URMC indicated persons from groups historically under-represented in computing–African-American, Hispanic, or Native American. White, Asian and students of two or more races were coded as “Majority” in this variable. Unfortunately, further disaggregation by specific race/ethnicity was not possible due to low numbers. Thus, even though the numbers in the respondent pool were not high enough to disaggregate by specific race/ethnicity, we could still identify trends by over-representation and under-representation.

18% of their population was tagged URMC. URMC was included as a variable in their analyses, and their results suggest that being in the URMC group did not influence persistence significantly. If I understand their regressions right, that doesn’t tell us if the correlations were different by race/ethnicity. URMC wasn’t a significant factor in the outcomes, but that is not the same as thinking that those other variables differ by race and ethnicity. Do Black females have a different relationship with video games or with community than white females, for example? Or with Latina students?

While the analysis did not leave race out of the analysis entirely, there was not enough diversity there to answer my colleague’s question. I do agree with the authors that we would expect differentiated experiences. If our analysis does not include race, can we account for the differentiated experiences?

It’s hard to include race in many of our post-secondary CS ed analyses simply because the number of non-white and non-Asian students is so small. We couldn’t say that Media Computation was successful with a diverse student body until University of Illinois Chicago published their results. Georgia Tech has few students from under-served groups in the CS classes we were studying.

There’s a real danger that we’re going to make strong claims about what works and doesn’t work in computer science based only on what works for students in the majority groups. We need to make sure that we include race in our CS education discussions, that we’re taking into account these differentiated experiences. If we don’t, we risk that any improvements or optimizations we make on the basis of these results will only work with the privileged students, or worse yet, may even exacerbate the differentiated experiences.

February 17, 2020 at 7:00 am 7 comments

Why some students do not feel that they belong in CS, and how we can encourage the sense that they do belong

One of my favorite papers at ICER 2019 was by Colleen Lewis and her colleagues, and is available on her website. I’ll quote her first:

Does a match between a students’ values of helping society and their perception of computing matter? Yes! A mismatch between a students’ goals of helping society and their perception of computing predicts a lower sense of belonging. And students from groups who – on average – are more likely to want to help society (women, Black students, Latinx students, and first-generation college students), this may be particularly problematic! (pdf)

  • Lewis, C. M., Bruno, P., Raygoza, J., & Wang, J. (2019). Alignment of Goals and Perceptions of Computing Predicts Students’ Sense of Belonging in Computing.Proceedings of the International Computer Science Education Research Workshop. Toronto, Canada.

I want to expand a bit on that paragraph. I often get the question, “Why aren’t more women and URM students going into CS?” We’re seeing female students and students of color leaving/avoiding CS at many stages, e.g., Barb’s deep analysis of AP CS*. Colleen and her collaborators are giving us one answer.

We know that students who have a sense of belonging in computing are more likely to stay in computing. Colleen et al. found that students who found that their values were supported in computing were more likely to feel a sense of belonging. So, if what you want to do with your life matches computing, you’re more likely to stick around in computing. This is the “alignment of goals” and “perceptions of computing” part of the title.

Next step: Students from demographic groups underrepresented in computing were more likely to value community and helping society than other students. These are their goals. Do students see that their goals align with their perception of computing? If so, then you have an increased sense of belonging. Colleen and her colleagues found that If the students who valued community perceived that they could use computing to support communal values, then they were more likely to stick around.

This result is obviously explanatory. It helps us to understand who stays in computing. It also suggests interventions. Want to retain more under-represented students in your CS classes? Help them to see that they can pursue their values in computing. Help them to update their perceptions so that they see the alignment of their goals with computing goals.

But what if you (as the teacher) don’t? This paper suggests future research questions. What if your CS class is entirely de-contextualized and doesn’t say anything about what the students might do with computing? What perceptions do the students bring to the CS class if nobody helps them to see the possibilities in computing? Which student goals align with these perceived goals of computing? We might guess what the answers might be, but it really does call for some explicit research. What are students’ goals and perceptions of computing in most CS classes today?


* Check out Barb’s blog at https://cs4all.home.blog/. As I’m writing this, Barb is finishing up the 2019 AP analysis. The gap between white and Black student pass rates on AP CSP is enormous, far larger than the gap on AP CS A. I’m hoping that she has updates there by the time this post appears.

December 9, 2019 at 7:00 am 1 comment

How to change undergraduate computing to engage and retain more women

My Blog@CACM post for this month talks about the Weston et al paper (from last week), and about a new report from the Reboot Representation coalition (see their site here). The report covers what the Tech industry is doing to close the gender gap in computing and “what works” (measured both empirically and from interviews with people running programs addressing gender issues).

I liked the emphasis in the report on redesigning the experience of college students (especially female) who are majoring in computing.  Some of their emphases:

  • Work with community colleges, too.  Community colleges tend to be better with more diverse students, and it’s where about half of undergraduates start today.  If you want to attract more diverse students, that’s where to start.
  • They encourage companies to offer “significant cash awards” to colleges that are successful with diverse students. That’s a great idea — computer science departments are struggling to manage undergraduate enrollment these days, and incentives to keep an eye on diversity will likely have a big impact.
  • Grow computer science teachers and professors. I appreciated that second emphasis.  There’s a lot of push to grow K-12 CS teachers, and I think it’s working.  But there’s not a similar push to grow higher education CS teachers. That’s going to be a chokepoint for growing more CS graduates.

The report is interesting — I recommend it.

October 21, 2019 at 7:00 am Leave a comment

Results from Longitudinal Study of Female Persistence in CS: AP CS matters, After-school programs and Internships do not

NCWIT has been tracking their Aspirations in Computing award applicants for several years. The Aspirations award is given to female students to recognize their success in computing. Tim Weston, Wendy DuBow, and Alexis Kaminsky have just published a paper in ACM TOCE (see link here) about their six year study with some 500 participants — and what they found led to persistence into CS in College.  The results are fascinating and somewhat surprising — read all the way to the end of the abstract copied here:

While demand for computer science and information technology skills grows, the proportion of women entering computer science (CS) fields has declined. One critical juncture is the transition from high school to college. In our study, we examined factors predicting college persistence in computer science and technology related majors from data collected from female high school students. We fielded a survey that asked about students’ interest and confidence in computing as well as their intentions to learn programming, game design, or invent new technology. The survey also asked about perceived social support from friends and family for pursuing computing as well as experiences with computing, including the CS Advanced Placement (AP) exam, out-of-school time activities such as clubs, and internships. Multinomial regression was used to predict persistence in computing and tech majors in college. Programming during high school, taking the CS Advanced Placement exam, and participation in the Aspirations awards program were the best predictors of persistence three years after the high school survey in both CS and other technology-related majors. Participation in tech-related work, internships, or after-school programs was negatively associated with persistence, and involvement with computing sub-domains of game design and inventing new applications were not associated with persistence. Our results suggest that efforts to broaden participation in computing should emphasize education in computer programming.

There’s also an article at Forbes on the study which includes recommendations on what works for helping female students to persist in computing, informed by the study (see link here). I blogged on this article for CACM here.

That AP CS is linked to persistence is something we’ve seen before, in earlier studies without the size or length of this study.  It’s nice to get that revisited here.  I’ve not seen before that high school work experience, internships, and after-school programs did not work.  The paper makes a particular emphasis on programming:

While we see some evidence for students’ involvement in computing diverging and stratifying after high school, it seems that involvement in general tech-related fields other than programming in high school does not transfer to entering and persisting in computer science in college for the girls in our sample. Understanding the centrality of programming is important to the field’s push to broaden participation in computing.  (Italics in original.)

This is an important study for informing what we do in high school CS. Programming is front-and-center if we want girls to persist in computing.  There are holes in the study.  I keep thinking of factors that I wish that they’d explored, but they didn’t — nothing about whether the students did programming activities that were personally or socially meaningful, nothing about role models, and nothing about mentoring or tutoring.  This paper makes a contribution in that we now know more than we did, but there’s still lots to figure out.

 

 

 

October 14, 2019 at 7:00 am 9 comments

Upcoming NSF Computing Education Workshops from Jeff Forbes

Jeff Forbes has just moved back to the National Science Foundation — great news!  He’s asked me to share information on a set of workshops that has just been funded, relevant to this list. People can sign up for the RPP and BPC Departmental Plans workshops now — the rest will have registration information upcoming.

BPC Plans Department Workshop

Award abstract: https://www.nsf.gov/awardsearch/showAward?AWD_ID=1941413

CISE PIs are encouraged to include meaningful BPC plans in proposals submitted to a subset of CISE’s research programs. Nancy Amato (University of Illinois) is hosting a workshop about the development of departmental BPC plans. The workshop is schedule for Nov 13-15 at Univ of Illinois to bring together teams of 2-3 people/department. Register here.

Computing in Undergraduate Education Workshop

Three workshops to “spark a national dialogue about the role of computing in undergraduate education.” The workshops will likely be in Chicago, DC, and Denver. These workshops will hopefully inform the community and NSF as we develop programs like CUE.

See the award abstract for more information https://www.nsf.gov/awardsearch/showAward?AWD_ID=1944777

CS for All RPP Development workshops

http://nnerpp.rice.edu/csforall-workshops/

Career Workshops for Teaching Track Faculty

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1933380

Data Science for All: Designing the Successful Inclusion of Data Science in High School Computer Science

NY Hall of Science will hold a workshop exploring the potential for including authentic data science curricula and hands-on projects in high school CS courses.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1922898

Women of Color in Tech

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1923245

Workshop – BP in STEM, Computer Science and Engineering through improved Financial Literacy

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1939739

 

September 19, 2019 at 7:00 am Leave a comment

The gender imbalance in AI is greater than in CS overall, and that’s a big problem

My colleague, Rada Mihalcea, sent me a copy of a new (April 2019) report from the AI Now Institute on Discriminating Systems: Gender, Race, and Power in AI (see link here) which describes the diversity crisis in AI:

There is a diversity crisis in the AI sector across gender and race. Recent studies found only 18% of authors at leading AI conferences are women, and more than 80% of AI professors are men. This disparity is extreme in the AI industry: women comprise only 15% of AI research staff at Facebook and 10% at Google. There is no public data on trans workers or other gender minorities. For black workers, the picture is even worse. For example, only 2.5% of Google’s workforce is black, while Facebook and Microsoft are each at 4%. Given decades of concern and investment to redress this imbalance, the current state of the field is alarming.

Without a doubt, those percentages do not match the distribution of gender and ethnicity in the population at large. But we already know that participation in CS does not match the population. How do the AI distributions match the distribution of gender and ethnicity among CS researchers?

A sample to compare to is the latest graduates with CS PhDs. Take a look at the 2018 Taulbee Survey from the CRA (see link here).  19.3% of CS PhD’s went to women. That’s terrible gender diversity when compared to the population, and AI  (at 10%, 15%, or 18%) is doing worse. Only 1.4% of new CS PhD’s were Black. From an ethnicity perspective, Google, Facebook, and Microsoft are doing surprisingly well.

The AI Now Institute report is concerned about intersectionality. “The overwhelming focus on ‘women in tech’ is too narrow and likely to privilege white women over others.” I heard this concern at the recent NCWIT Summit (see link here).  The issues of women are not identical across ethnicities. The other direction of intersectionality is also a concern. My student, Amber Solomon, has published on how interventions for Black students in CS often focus on Black males: Not Just Black and Not Just a Woman: Black Women Belonging in Computing (see link here).

I had not seen previously a report on diversity in just one part of CS, and I’m glad to see it. AI (and particularly the sub-field of machine learning) is growing in importance. We know that having more diversity in the design team makes it more likely that a broader range of issues are considered in the design process. We also know that biased AI technologies are already being developed and deployed (see the Algorithmic Justice League). A new Brookings Institute Report identifies many of the biases and suggests ways of avoiding them (see report here). AI is one of the sub-fields of computer science where developing greater diversity is particularly important.

 

June 3, 2019 at 7:00 am 1 comment

The systemic factors that limit Black participation in the Tech sector

I learned a lot from Kamau Bobb’s recent Atlantic article, “The Black Struggle for Technology Jobs.”  In it, he details the systemic factors that limit Black participation in the Tech sector.  He uses the possibility of Amazon’s HQ2 going to Atlanta as a framing.

After Atlanta made the shortlist of cities vying for Amazon’s second global headquarters, HQ2, it submitted a multibillion-dollar investment to try to seal the deal. (Other cities’ proposals were even bigger.) At stake is nothing less than the city’s economic future: HQ2 promises more than 50,000 high-tech jobs with an average salary of more than $100,000. With the tech industry looking like the future of all industry, Atlanta landing Amazon’s HQ2 would be a dream come true.

But a dream for whom? Highly educated people, particularly those with technical skills, are the ones who are really eligible for these prized jobs. People without that kind of education risk becoming even more marginalized in an increasingly tech-driven economy. In Atlanta, one of the most segregated cities in the United States, history has already largely determined who gets to benefit from the potential of Amazon.

In 2016, there was only one census tract in Atlanta where the population was more than 65 percent black, and where more than half the population age 25 or older had a bachelor’s degree or higher. In 2000, there were 10. Here, many black and brown students, and poor students of all backgrounds, receive a substandard education that does not prepare them for entry to the select colleges and universities tech companies draw their workforces from. Consequently, with or without Amazon’s investment, the city’s black population likely won’t land stem jobs unless they can gain access to the rigorous educational paths required to compete for them. In Atlanta and the many other American cities still scarred by decades of racist education policies, the future of work is still largely defined by a past from which their residents of color can’t seem to break free.

I’m biased in favor of this article because one of the students he interviews in this piece is my daughter, Katie. I learned from Katie’s comments, too.  I knew that the public high school where we sent all three of our children was unusually diverse, yet it was a family conversation how the gifted/accelerated classes were almost all white and Asian.  Because of what Barb and I do, we kept an eye on the AP CS class at that high school, and were surprised every year at how few Blacks ever entered the class, despite the significant percentage of Black students in the school. I’m glad that, years later, Katie still thinks about those issues and why so few Black students made it into her AP classes.

 

December 3, 2018 at 8:00 am 2 comments

Older Posts


Enter your email address to follow this blog and receive notifications of new posts by email.

Join 7,680 other followers

Feeds

Recent Posts

Blog Stats

  • 1,744,439 hits
April 2020
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
27282930  

CS Teaching Tips