Posts tagged ‘BPC’

What can the Uber Gender Pay Gap Study tell us about improving diversity in computing?

The gig economy offers the ultimate flexibility to set your own hours. That’s why economists thought it would help eliminate the gender pay gap. A new study, using data from over a million Uber drivers, finds the story isn’t so simple.

Source: What Can Uber Teach Us About the Gender Pay Gap? – Freakonomics

A fascinating Freakonomics podcast tells us about why women are paid less than men (by about 7%) on Uber.  They ruled out discrimination, after looking at a variety of sources.  They found that they could explain all of that 7% from three factors.

They found that even in a labor market where discrimination can be ruled out, women still earn 7 percent less than men — in this case, roughly 20 dollars an hour versus 21. The difference is due to three factors: time and location of driving; driver experience; and average speed.

The first factor is that women choose to be Uber drivers in different places and at different times than men.  Men are far more often to be drivers at 3 am on Saturday morning. The second factor is particularly interesting to me.  Men tend to stick around on Uber longer than women, so they learn how to work the system. The third factor is that men drive faster, so they get more rides per hour.

When someone from Uber was asked about how they might respond to these results, he focused on the second factor.

But for example, you could imagine that if we make our software easier to use and we can steepen up the learning curve, then if people learn more quickly on the system, then that portion of the gap could be resolved via some kind of intervention. But that’s just an example. And we’re not there yet with our depth of understanding, to just simply write off the gender gap as a preference.

Improving learning might help shrink the gender pay gap.  Obviously, I’m connecting this to computing education here.  What role could computing education play in reducing gaps between males and females in computing?  We have reason to believe that our inability to teach programming well led to the gender gap in computing.  Could we make things better if we could teach computing well?

Here are two thoughts exploring that question.

  1. We know (e.g., from Unlocking the Clubhouse) that men tend to sink more time into programming, which can give them a lead in undergraduate education (what Jane Margolis has called ‘preparatory privilege‘).  What if we could teach programming more efficiently?  Could we close that gap?  If we had a science of teaching programming, we could improve efficiency so that a few hours of focused effort in the classroom might lead to more effective learning of tens of hours of figuring out how to compile under Debian Linux.
  2. When I first started thinking about the “phonics of computing education” and our ebooks, I was inspired by work from Caroline Simard that suggested that helping female mid-level managers keep up their technical skills could help them to progress in the tech industry.  Female mid-level managers have less time to invest in technical learning, and at the mid-level, technical education still matters.  If you have a project that needs a new toolset, you’ll more likely give it to the manager who knows that toolset.  If we could teach female mid-level technical managers more effectively and efficiently, could they make it into the C-suite of tech companies?

Maybe better computing education could be an important part of improving diversity, along multiple paths.

March 5, 2018 at 7:00 am 6 comments

SIGCSE 2018 Preview: Black Women in CS, Rise Up 4 CS, Community College to University CS, and Gestures for Learning CS

While I’m not going to be at this year’s SIGCSE, we’re going to have a bunch of us there presenting cool stuff.

On Wednesday, Barb Ericson is going to this exciting workshop, CS Education Infrastructure for All: Interoperability for Tools and Data Analytics, organized by Cliff Shaffer, Peter Brusilovsky, Ken Koedinger, and Stephen Edwards. Barb is eager to talk about her adaptive Parsons Problems and our ebook work.

My PhD student, Amber Solomon, is presenting at RESPECT 2018 (see program here) on a paper with Dekita Moon, Amisha Roberts, and Juan Gilbert, Not Just Black and Not Just a Woman: Black Women Belonging in Computing. They talk about how expectations of being Black in CS and expectations as a woman in CS come into conflict for the authors.

On Thursday, Barb is presenting her paper (with Tom McKlin) Helping Underrepresented Students Succeed in AP CSA and Beyond, which are the amazing results from the alumni study from her Project Rise Up effort to help underrepresented students succeed at Advanced Placement CS A. When Barb was deciding on her dissertation topic, she considered making Rise Up her dissertation topic, or adaptive Parsons problems. She decided on the latter, so you might think about this paper as the dissertation final chapter if she had made Rise Up her dissertation focus. Project Rise Up grew from Barb’s interest in AP CS A and her careful, annual analysis of success rates in AP CS A for various demographics (here is her analysis for 2017). It had a strong impact (and was surprisingly inexpensive), as seen in the follow-on statistics and the quotes from the students now years after Rise Up. I recommend going to the talk — she has more than could fit into the paper.

On Friday, my PhD student, Katie Cunningham, is presenting with her colleagues from California State University Monterey Bay and Hartnell College, Upward Mobility for Underrepresented Students: A Model for a Cohort-Based Bachelor’s Degree in Computer Science.  The full author list is Sathya Narayanan, Katie, Sonia Arteaga, William J. Welch, Leslie Maxwell, Zechariah Chawinga, and Bude Su. They’re presenting the “CSin3” program which drew in students from traditionally underrepresented groups and helped them earn CS degrees with remarkable success: A three year graduation rate of 71%, compared to a 22% four-year graduation rate, as well as job offers from selective tech companies. The paper describes the features of the program that made it so successful, like its multi-faceted support outside the classroom, the partnership between a community college and a university, and keeping a cohort model. The paper has been recognized with a SIGCSE 2018 Best Paper Award in the Curricula, Programs, Degrees, and Position Papers track.

On Friday, my colleague Betsy DiSalvo is going to present at the NSF Showcase some of the great work that she and her student, Kayla des Portes, have been doing with Maker Oriented Learning for Undergraduate CS.

On Saturday, my EarSketch colleagues are presenting their paper: Authenticity and Personal Creativity: How EarSketch Affects Student Persistence with Tom McKlin, Brian Magerko, Taneisha Lee, Dana Wanzer, Doug Edwards, and Jason Freeman.

Also on Saturday, Amber with her undergraduate researchers, Vedant Pradeep and Sara Li, are presenting a poster which is also a data collection activity, so I hope that many of you will stop by. Their poster is The Role of Gestures in Learning Computer Science. They are interested in how gesture can help with CS learning and might be an important evaluation tool — students who understand their code, tend to gesture differently when describing their code than students who have less understanding. They want to show attendees what they’ve seen, but more importantly, they want feedback on the gestures they’ve observed “in the wild.” Have you seen these? Have you seen other gestures that might be interesting and useful to Amber and her team? What other kinds of gestures do you use when explaining CS concepts? Please come by and help inform them about the gestures you see when teaching and learning CS.

February 21, 2018 at 7:00 am Leave a comment

ECEP 2018: Measuring and Making Progress on Broadening Participation in Computing

The 2018 Annual Meeting of the Expanding Computing Education Pathways (ECEP) Alliance was at Georgia Tech January 26-27. ECEP is an NSF-funded alliance to broaden participation in computing. We had about 90 participants, state leaders from 16 states and Puerto Rico. Attendees were from a range of positions, from state departments of education, state boards of education, STEM centers, non-profits, Governor’s offices, University professors, and CS teachers from elementary or high school. The focus at this meeting was to define what it means to broaden participation in computing (BPC) education for each state. The state teams worked at defining what data variables they needed in order to inform their BPC goals, and how they would know (by looking at those data) if they were making progress towards those goals.  You can see the play-by-play with pictures via Twitter hashtag #ECEP2017.

I learned so much at this event. I’m still processing all of it, but here are some of the things that are standing out to me right now.

Caitlin Dooley from Georgia Department of Education gave a terrific talk about the challenges in Georgia.  She made the argument that CS is the equity issue of our age.  She said that the challenge of getting CS teachers into poorer (low-SES) and rural districts is that teachers are leaving when they have the skillsets. The challenge is to have good school leaders to retain teachers.

Anne DeMallie from Massachusetts gave a compelling talk about how they’re integrating CS across the curriculum, especially in elementary school. Massachusetts and New Jersey are two states that integrated their CS and Digital Literacy standards, trying to make it easier for schools to integrate CS education. I liked the framework she offered on how to think about integrating CS into other subjects: exist, enhance, and extend.

I was impressed by the states who are setting concrete, measurable goals. Alabama has set a goal of every high school student having access to CS education by 2022. South Carolina plans to provide access to CS education in every middle and high school in five years. Maryland has a detailed 15 year plan that gets every student access to high-quality CS education with certified high school teachers. (Seen below, presented by Megean Garvin.)

Kamau Bobb of Constellations gave our keynote (as a “fireside chat” with Debra Richardson). His talk was exciting and challenging.  He pointed out that high school CS isn’t going to get kids into University. Pushing CS instead of math and science isn’t helping students get admission to higher education.  Schools aren’t held accountable for CS — they’re being held accountable for math, science, and language arts learning. CS has to play a role in meeting student and school needs.

Kamau pointed out that “Segregation is an immutable truth.”  One of the stories he told was to about textual literacy.  During Reconstruction (starting 1865), leaders realized the critical need for all African-Americans to learn to read.  The Georgia Literacy Project to address the dramatic literacy gap was just started in 2010 — 145 years later.  How long will it take us to achieve equitable access to computing education?

Most of the time was spent in working meetings — state teams sitting down with data reports, developing plans for broadening participation in CS, and grounding the plans in what data they have and what trends they expect to see in those data. The challenges of gathering data on the ground are huge.  I was sitting with one state where a CS teacher on the team pointed out that she had 85 students this year. The Department of Education person from that state did a search, and found that none of those students showed up in their database.  Other states pointed out how hard it is to compare data across states.  We use AP CS data for these kinds of comparisons, but in some states (like Arkansas), all AP exams are paid for by the state. That means that more kids are taking the exam, which means that the pass rates have a different context.

The amount of support for CS Education from each state varies dramatically. Many states have no one in the Department of Education who is informed about CS. Here in Georgia, we have one full-time CS coordinator, which is terrific. In Arkansas, they have nine full-time CS specialists to help teachers.

It was energizing to be with so many passionate leaders who are working to improve computing education in their state.  It’s also amazing to see how much work there is to go to reach everyone with high-quality computing education.

This was the last ECEP meeting organized by this group of NSF Principal Investigators. Rick Adrion, Renee Fall, Barbara Ericson, and I are done when the existing ECEP grant runs out at the end of September.  We’ve worked with a new team of PI’s to help them build a proposal for ECEP 2.  The amazing Sarah Dunton, the manager of our state and territory alliance, will continue in ECEP 2. The PIs for ECEP 2 are Carol Fletcher, Anne Leftwich, Debra Richardson, Maureen Biggers, and Leigh Ann DeLyser.  We’re hoping that they get funded and continue to help states make progress on implementing and broadening computing education.

January 29, 2018 at 7:00 am 3 comments

Georgia Tech Launches Constellations Center Aimed at Equity in Computing

 

The Constellations Center was launched at a big event on December 11.  I was there, to hear Executive Director Charles Isbell host the night, which included a great conversation with Senior Director Kamau Bobb (formerly of NSF).

 

Constellations is going to play a significant role in keeping a focus on broadening participation in computing in Georgia, and to serve as a national leader in making sure that everyone gets access to computing education.

Georgia Tech’s College of Computing has launched the Constellations Center for Equity in Computing with the goal of democratizing computer science education. The mission of the new center is to ensure that all students—especially students of color, women, and others underserved in K-12 and post-secondary institutions—have access to quality computer science education, a fundamental life skill in the 21st century.

Constellations is dedicated to challenging and improving the national computer science (CS) educational ecosystem through the provision of curricular content, educational policy assessment, and development of strategic institutional partnerships. According to Senior Director Kamau Bobb, democratizing computing requires a “real reckoning with the race and class divisions of contemporary American life.”

See more here.

January 12, 2018 at 7:00 am 1 comment

How the Imagined “Rationality” of Engineering Is Hurting Diversity — and Engineering

Just a few weeks ago, Richard Thaler won the Nobel prize in Economics. Thaler is famous for showing that real human beings are not the wholly rational beings that Economic theory had previously assumed.  It’s timely to consider where else we assume rationality, and where that rational assumption may lead us into flawed decisions and undesirable outcomes.  The below article from Harvard Business Review considers how dangerous the Engineering “purity” argument is.

Just how common are the views on gender espoused in the memo that former Google engineer James Damore was recently fired for distributing on an internal company message board? The flap has women and men in tech — and elsewhere — wondering what their colleagues really think about diversity. Research we’ve conducted shows that while most people don’t share Damore’s views, male engineers are more likely to…

But our most interesting finding concerned engineering purity. “Merit is vastly more important than gender or race, and efforts to ‘balance’ gender and race diminish the overall quality of an organization by reducing collective merit of the personnel,” a male engineer commented in the survey. Note the undefended assumption that tapping the full talent pool of engineers rather than limiting hiring to a subgroup (white men) will decrease the quality of engineers hired. Damore’s memo echoes this view, decrying “hiring practices which can effectively lower the bar for ‘diversity’ candidates.”

Google and taxpayer money, Damore opines, “is spent to water only one side of the lawn.” Many male engineers in our survey agreed that women engineers are unfairly favored. “As regards gender bias, my workplace offers women more incentives and monetary support than it does to males,” commented one male engineer. Said another, women “will always be safe from a RIF [reduction in force]. As well as certain companies guaranteeing female engineers higher raises.”

Source: How the Imagined “Rationality” of Engineering Is Hurting Diversity — and Engineering

December 11, 2017 at 7:00 am 1 comment

NSF funds FLIP Alliance to diversify CS professoriate #CSEdWeek

This is an exciting new project from Valerie Taylor (University of Chicago), Charles Isbell (Georgia Tech), and Jeffrey Forbes (Duke University). It’s based on an observation that Charles has made before, that we can diversify CS faculty by impacting just a handful of schools.

The goal of the NSF-funded FLIP (Diversifying Future Leadership in the Professoriate) Alliance is to address the broadening participation challenge of increasing the diversity of the future leadership in the professoriate in computing at research universities as a way to achieve diversity across the field.  In particular, the problem that we address is stark and straightforward: only 4.3% of the current tenure-track faculty in computing at these universities are from underrepresented groups.

The FLIP Alliance solution is equally stark and straightforward: we intentionally bring together the very small number of departments responsible for producing the majority of the professoriate with individuals and organizations that understand how to recruit, retain, and develop students from underrepresented groups in order to create a network that can quickly and radically change the demographic diversity of the professoriate across the entire field.

from CMD-IT FLIP Alliance

December 7, 2017 at 7:00 am 5 comments

US National Academics Report Investigates the Growth of CS Undergraduate Enrollments #CSEdWeek

The new National Academies report on the growth of CS undergraduate enrollments came out last month. It’s important because it reflects the recommendations of scholars across disciplines in dealing with our enormous enrollment growth (see Generation CS report for more findings on the surge).

I wrote about this report in my Blog@CACM post for this month, The Real Costs of a Computer Science Teacher are Opportunity Costs, and Those Are Enormous.  The report talks about how hard it is to hire new faculty to deal with the enrollment boom, because the Tech industry is increasing its share of new PhD’s and recruiting away existing faculty.

Eric Roberts at Stanford was part of the report writing, and points out that the committee did not reach agreement that there is a problem with participation by underrepresented minorities. Quoting Eric’s message to SIGCSE-members, “the committee did not find comparable evidence that departmental limitations have historically had a negative effect on participation by underrepresented minorities. In fact, the total number of degrees awarded to students in the largest of the underrepresented demographic groups (African American and Latino/Latina) has roughly matched the percentages at which students from those communities obtain bachelor’s degrees.”  It’s surprising, and Eric’s note goes on to explain why that result is so concerning. The report does say clearly, “Institutions should take deliberate actions to support diversity in their computer science and related programs.”

Since 2006, computer science departments in the U.S and Canada have experienced a surge in the number of undergraduate majors and course enrollments. The resulting strain on departmental and institutional resources has been significant for many departments, especially with respect to faculty hiring and overall workload. The National Academy of Sciences (NAS) has recently addressed the issue with the release a report titled “Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments.”

The NAS report discusses strategies central for managing enrollment and resources, and makes recommendations for departments and institutions. Its findings and recommendations provide much-needed guidelines on how institutions can allocate resources to meet growing student demand and to adequately support their computer science department in the increasingly central role of computer science in education and research. “The way colleges and universities respond to the surge in student interest and enrollment can have a significant impact on the health of the field,” said Susanne Hambrusch, co-chair of the report’s committee and a professor of computer science at Purdue University.  “While there is no one-size-fits-all answer, all institutions need to make strategic plans to address realistically and effectively the growing demand for the courses.”

Source: NAS Report Investigates the Growth of Computer Science Undergraduate Enrollments

December 6, 2017 at 7:00 am 1 comment

Older Posts


Recent Posts

April 2018
M T W T F S S
« Mar    
 1
2345678
9101112131415
16171819202122
23242526272829
30  

Feeds

Blog Stats

  • 1,499,356 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 5,248 other followers

CS Teaching Tips