Posts tagged ‘BPC’

It’s not about Google. Our diversity efforts aren’t working

The sexist “internal memo” from Google has been filling my social media feeds for the last few days. I’m not that excited about it.  Within every organization, there will be some people who disagree with just about any policy.  The enormous screed is so scientifically incorrect that I have a hard time taking it seriously.  

For example, the memo claims that the gap between men and women in CS is due to biology. That can’t be when there are more women than men in CS, especially in the Middle East and Northern Africa.  I saw a great study at NCWIT a few years ago on why programming is seen as women’s work in those parts of the world — it’s detailed work, done inside, sometimes with one other person. It looks like sewing or knitting. When told that programmers were mostly male in the US, the participants reportedly asked, “What’s masculine about programming?”  There’s an interesting take from four scientists who claim that everything that the internal memo says is correct.

The positive outcome from this memo is Ian Bogost’s terrific essay about the lack of diversity in Tech, from industry to higher education. It’s not about Google. It’s that our diversity efforts are having little impact. Ian explains how our problem with diversity is deeply rooted and influences the historical directions of computing. I highly recommend it to you.

These figures track computing talent more broadly, even at the highest levels. According to data from the Integrated Postsecondary Education Data System, for example, less than 3 percent of the doctoral graduates from the top-10 ranked computer science programs came from African American, Hispanic, Native American, and Pacific Islander communities during the decade ending in 2015.

Given these abysmal figures, the idea that diversity at Google (or most other tech firms) is even modestly encroaching on computing’s incumbents is laughable. To object to Google’s diversity efforts is to ignore that they are already feeble to begin with.

Source: A Googler’s Anti-Diversity Screed Reveals Tech’s Rotten Core – The Atlantic

August 9, 2017 at 7:00 am 13 comments

The factors influencing students choosing to go into STEM: Economics and gender matter

I saw this in a College Board report, which summarized the paper cited below with these bullets:

  • For both genders, academics played a large part in major choice—passing grades in calculus, quantitative test scores, and years of mathematics in high school were notable.
  • Also important to both young men and women was a student’s own view of his or her quantitative/mathematical abilities.
  • Key drivers in decision making differed between genders. First-generation status correlated with young men being more likely to major in engineering, while a low-income background was associated with young women majoring in scientific fields.

Based on the findings presented here, first generation status leads to a greater likelihood of choosing engineering careers for males but not for females. Financial difficulties have a greater effect on selecting scientific fields than engineering fields by females. The opposite is true for males. Passing grades in calculus, quantitative test scores, and years of mathematics in high school as well as self-ratings of abilities to analyze quantitative problems and to use computing are positively associated with choice of engineering fields.

Source: Choice of Academic Major at a Public Research University: The Role of Gender and Self-Efficacy | SpringerLink

July 31, 2017 at 7:00 am 2 comments

Helping students succeed in AP CS: GT Computing Undergraduate Female Rising Up to Challenge in CS

There’s a common refrain heard at “CS for All” and BPC events in the US these days. “AP CS A is just terrible. AP CS Principles will fix everything.” The reality is that there are bad AP CS A classes, and there are good ones. There is evidence that just having good curricula doesn’t get you more and more diverse students. The more important reality is that AP CS A accurately matches most introductory computer science classes in the United States. If you want students to succeed at the CS classes that are in our Universities today, AP CS A is the game to play at high school.

That’s why Barbara’s Rise Up programs are so important. She’s helping female and African-American students succeed in the CS that’s in their schools and on University campuses today. And she’s having tremendous success, as seen in the story below about a female high school football player who is now a CS undergraduate.

Barbara’s work is smart, because she’s working with the existing CS infrastructure and curricula. She’s helping students to succeed at this game, through a process of tutoring and near-peer mentoring. This is a strategy to get more female CS undergraduates.

That’s when she discovered Sisters Rise Up 4 CS, a relatively new program developed in Fall 2014 at Georgia Tech by Barbara Ericson. The program was based on Project Rise Up 4 CS, which aims to help African-American students pass the AP Computer Science A exam. Sisters Rise Up does the same for females.The program offers extra help sessions in the form of webinars and in-person help sessions, near-peer role models, exposure to a college campus, and a community of learners.“The program helped me get hooked on computer science,” Seibel said. “I started to actually learn. Seeing that some of the girls in the program had interned at Google or other places like that, and that they really loved CS, it gets you excited about it. They were only a few years older than me, and I was like, ‘Oh. That could be me.’”

Source: GT Computing Undergraduate Sabrina Seibel Rising Up to Challenge in CS | College of Computing

July 26, 2017 at 9:00 am 1 comment

Why are underrepresented minorities and poor over-represented in Code.org courses?

Code.org has a blog post describing their latest demographics results showing that they have remarkably high percentages of women (45%) and under-represented minorities (48%). In fact, their students are 49% on free and reduced meals.

Only 38% of students in the US are on free and reduced lunch.  44% of students in the US are Black or Hispanic (using US Department of Education data).

What does it mean that Code.org classes are over-sampling under-represented groups and poorer students?

I don’t know. Certainly, it’s because Code.org targeted large, urban school districts.  That’s who’s there.  But it’s not like the classes are unavailable to anyone else.  If the perception was these are valuable, shouldn’t more suburban schools be wanting them, too?

One explanation I can imagine is that schools that are majority poor and/or minority might be under-funded, so Code.org classes with their well-defined curriculum and clear teacher preparation models are very attractive. Those schools may not have the option of hiring (say) an AP CS teacher who might pick from one of the non-Code.org curriculum options, or even develop his or her own.

The key question for me is: Why aren’t the more majority and wealthier schools using Code.org classes?  CS is a new-to-schools, mostly-elective subject.  Usually those new opportunities get to the wealthy kids first.  Unless they don’t want it. Maybe the wealthy schools are dismissing these opportunities?

It’s possible that Code.org classes (and maybe CS in high school more generally) might get end up stigmatized as being for the poor and minority kids?  Perhaps the majority kids or the middle/upper-class kids and schools avoid those classes? We have had computing classes in Georgia that were considered “so easy” that administrators would fill the classes with problem students — college-bound students would avoid those classes.  We want CS for all.

Code.org has achieved something wonderful in getting so many diverse students into computing classes. The questions I’m raising are not meant as any criticism of Code.org.  Rather, I’m asking how the public at large is thinking about CS, and I’m using Code.org classes as an exemplar since we have data on them.  Perceptions matter, and I’m raising questions about the perceptions of CS classes in K-12.

I do have a complaint with the claim in the post quoted below.  The citation is to the College Board’s 2007 study which found that AP CS students are more likely to major in CS than most other AP’s, with a differentially strong impact for female and under-represented minority students.  “Taking AP CS” is not the same as “learn computer science in K-12 classrooms.”  That’s too broad a claim — not all K-12 CS is likely to have the same result.

Today, we’re happy to announce that our annual survey results are in. And, for the second year in a row, underrepresented minorities make up 48% of students in our courses and females once again make up 45% of our students…When females learn computer science in K-12 classrooms, they’re ten times more likely to major in it in college. Underrepresented minorities are seven to eight times more likely.

Source: Girls and underrepresented minorities are represented in Code.org courses

July 21, 2017 at 8:00 am 8 comments

“Algorithms aren’t racist. Your skin is just too dark.”: Teaching Ethics to future Software Developers

In my Ethics class this summer, I had my students watch Joy Buolamwini’s TED talk when we talked about professional ethics and responsibility.  My students had not before considered the possibility that bias is being built into software, but they recognized the importance of her message. Our students who will be software engineers have to be thinking about her message, about the racism that we build into our machines.

She’s been getting a lot of press since her TED talk, including this recent piece in The Guardian.  In her blog post quoted below, she responds to her critics in a careful and respectful tone, which took an enormous amount of maturity and patience.  “Suggesting people with dark skin keep extra lights around to better illuminate themselves misses the point.”  She is more patient and well-spoken than me. I think my response to the critics would have included the phrase, “Are you kidding me?!?” (with perhaps a couple more words in there).

One of the goals of the Algorithmic Justice League is to highlight problems with artificial intelligence so we can start working on solutions. We provide actionable critique while working on research to make more inclusive artificial intelligence. In speaking up about my experiences, others have been encouraged to share their stories. The silence is broken. More people are aware that we can embed bias in machines. This is only the beginning as we start to collect more reports.

Source: Algorithms aren’t racist. Your skin is just too dark.

July 17, 2017 at 7:00 am Leave a comment

Teaching the students isn’t the same as changing the culture: Dear Microsoft: absolutely not. by Monica Byrne

A powerful blog post from Monica Byrne with an important point. I blogged a while back that teaching women computer science doesn’t change how the industry might treat them.  Monica is saying something similar, but with a sharper point. I know I’ve heard from CS teachers who are worried about attracting more women into computing.  Are we putting them into a unpleasant situation by encouraging them to go into the computing industry?

Then—gotcha!—they’re shown a statistic that only 6.7% of women graduate with STEM degrees. They look crushed. The tagline? “Change the world. Stay in STEM.”

Are you f***ing kidding me?

Microsoft, where’s your ad campaign telling adult male scientists not to rape their colleagues in the field? Where’s the campaign telling them not to steal or take credit for women’s work? Or not to serially sexually harass their students? Not to discriminate against them? Not to ignore, dismiss, or fail to promote them at the same rate as men? Not to publish their work at a statistically significant lower rate?

Source: Dear Microsoft: absolutely not. | monica byrne

June 30, 2017 at 7:00 am 3 comments

Using tablets to broaden access to computing education: Elliot Soloway and truly making CS for All

I recently had the opportunity to visit with my PhD advisor, Elliot Soloway. Elliot has dramatically changed the direction of his research since we worked together. And he’s still very persuasive, because now I keep thinking about his challenge to push educational technology onto the least expensive devices.

When I worked with Elliot in the late 1980’s and early 1990’s, we emphasized having lots of screen real estate. Though the little Macintosh Plus was still popular through much of that time, Elliot was hooking up 21-inch, two page displays for all our development and at the high schools where we worked. The theoretical argument was the value of multiple-linked representations (like in this paper from Bob Kozma). By giving students multiple representations of their program and their design, we would facilitate learning across and between representations. The goal was to get students to see programming as design.

But in the mid 1990’s, Elliot changed his direction to emphasize inexpensive, handheld devices. I remember asking him why at the time, and he pointed out that you could give 10 students access to these low-cost devices for one of the higher-end devices. And access trumps screens.

Now, Elliot has a project, Intergalactic Mobile Learning Center, that produces software for learning that runs on amazingly inexpensive computers. Go to http://www.imlc.io/apps and try out their all-HTML software on any of your devices.

I purchased an Amazon Fire HD 8 tablet last year as a media consumption device (reading, videos, and music). For less than $100, it’s an amazingly useful device that I carry everywhere since it’s light and mostly plastic. Here’s some of IMLC’s software running on my inexpensive tablet.

Teaching Computer Science on a Tablet

I have been arguing in this blog that we need a greater diversity of teaching methods in computer science, to achieve greater diversity and to teach students (and reach students) who fail with our existing methods. Elliot’s argument for inexpensive tablets has me thinking about the value for computing education.

If our only CS teaching method is “write another program,” then a tablet makes no sense. Typing on a tablet is more difficult than on a laptop or desktop computer. I have been arguing that we can actually teach a lot about coding without asking students to program. If we expand our teaching methods to those that go beyond simply writing programs, then a tablet makes a lot of sense.

Could a focus on using tablets to teach computer science drive us to develop new methods? If more CS teachers tried to use tablets, might that lead to greater adoption of a diverse range of CS teaching methods?

Elliot’s argument is about bridging the economic and digital divide. Can we use the low cost of tablets to break down economic barriers to learning computer science? Computing education via tablets may be key to the vision of CS for All. We can outfit a whole classroom with tablets much more cheaply than buying even mid-range laptops for an elementary or middle school classroom.  There are people suggesting that if we buy kids iPads, we’ll improve learning (e.g., Los Angeles schools).  I’m making the inverse argument.  If we as computing curriculum/technology developers and teachers figure out how to teach computing well with tablets, we’ll improve learning for everyone.

I started checking out what I could do with my less than $100 tablet. I was amazed! Moore’s Law means that the low-end today is surprisingly capable.

GP, the new blocks-based programming language that I’ve been working with (see posts here and here), runs really well on my Fire HD 8 tablet. In fact, it runs better (more functionality, more reliable, greater stability) in the browser of my Fire tablet than the browser-based GP does on my iPad Pro (which costs about a magnitude more).  (There is an iOS version of GP which is fast and stable, but doesn’t have all the features of the browser-based version.)

GP running on a Fire HD 8 Tablet — two Media Computation projects (mirroring on left, removing red eye on right)

Our ebooks run well on the Fire HD 8 tablet. I can program Python in our ebook using the tablet. Our approach in the ebooks emphasizes modification to existing programs, not just coding from scratch. Tweaking text works fine on the tablet.

Running Python code on the Fire HD 8 Tablet

A wide range of CS education practice activities, from multiple choice questions to Parsons Problems, work well on the Fire HD 8.

Parsons Problem on Fire HD 8 Tablet

I tried out WeScheme on my Fire HD 8, too.

I bought the cheapest Chromebook I could find for this trip. I wanted a laptop alternative to take to China and for commuting on the Barcelona subway, rather than my heavier and more expensive MacBook Air. All of these browser-based tools (GP, Python programming in the ebook, Parsons Problems) run great on my $170 Acer Chromebook, plus I get a keyboard. Even a Chromebook would require different teaching and learning methods than what we use in many CS courses. I’m not going to run Eclipse or even JES on a Chromebook. (Though Emacs has been ported to the Chromebook, it only runs on certain Chromebooks and not mine). Google is aiming to merge Chromebook and Android development so that apps run on both. I don’t really understand all the differences between tablets and Chromebooks, but I do know that Chromebooks are becoming more common in schools.

A Chromebook costs about twice what a low-end tablet costs. While that is still much less than most laptops, twice is a big markup for a poor student or a budget-strapped school. It’s worth pushing for the lowest end.

CS education researchers, developers, and teachers should explore teaching computing with tablets. Some are doing this already. The next version of Scratch will run on mobile phones, and the current version will already run on some phones and tablets. Creating CS learning opportunities on low-end tablets will make computing education more affordable and thus accessible to a broader range of potential CS students.  My proposal isn’t about offering the poor a cheaper, low-quality alternative. Tablets force us to expand and diversify our teaching methods, which will lead us to create better and more accessible computing education for all.

June 14, 2017 at 7:00 am 9 comments

Older Posts


Recent Posts

August 2017
M T W T F S S
« Jul    
 123456
78910111213
14151617181920
21222324252627
28293031  

Feeds

Blog Stats

  • 1,418,687 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 5,125 other followers

CS Teaching Tips